Spaces:
Building
Building
# Standard library imports | |
import logging | |
import os | |
import re | |
from typing import Dict, Any, List | |
from urllib.parse import urlparse | |
import torch | |
# Third-party imports | |
import requests | |
import wandb | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# LlamaIndex core imports | |
from llama_index.core import VectorStoreIndex, Document, Settings | |
from llama_index.core.agent.workflow import FunctionAgent, ReActAgent, AgentStream | |
from llama_index.core.callbacks.base import CallbackManager | |
from llama_index.core.callbacks.llama_debug import LlamaDebugHandler | |
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser, UnstructuredElementNodeParser | |
from llama_index.core.postprocessor import SentenceTransformerRerank | |
from llama_index.core.query_engine import RetrieverQueryEngine | |
from llama_index.core.retrievers import VectorIndexRetriever | |
from llama_index.core.tools import FunctionTool | |
from llama_index.core.workflow import Context | |
from llama_index.postprocessor.colpali_rerank import ColPaliRerank | |
# LlamaIndex specialized imports | |
from llama_index.callbacks.wandb import WandbCallbackHandler | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from llama_index.llms.huggingface import HuggingFaceLLM | |
from llama_index.readers.assemblyai import AssemblyAIAudioTranscriptReader | |
from llama_index.readers.json import JSONReader | |
from llama_index.readers.web import TrafilaturaWebReader | |
from llama_index.readers.youtube_transcript import YoutubeTranscriptReader | |
from llama_index.tools.arxiv import ArxivToolSpec | |
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec | |
from llama_index.core.agent.workflow import AgentWorkflow | |
# --- Import all required official LlamaIndex Readers --- | |
from llama_index.readers.file import ( | |
PDFReader, | |
DocxReader, | |
CSVReader, | |
PandasExcelReader, | |
) | |
from typing import List, Union | |
from llama_index.core import VectorStoreIndex, Document, Settings | |
from llama_index.core.tools import QueryEngineTool | |
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser | |
from llama_index.core.postprocessor import SentenceTransformerRerank | |
from llama_index.core.query_engine import RetrieverQueryEngine | |
from llama_index.core.query_pipeline import QueryPipeline | |
import importlib.util | |
import sys | |
wandb.init(project="gaia-llamaindex-agents") # Choisis ton nom de projet | |
wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"}) | |
llama_debug = LlamaDebugHandler(print_trace_on_end=True) | |
callback_manager = CallbackManager([wandb_callback, llama_debug]) | |
logging.basicConfig(level=logging.INFO) | |
logging.getLogger("llama_index.core.agent").setLevel(logging.DEBUG) | |
logging.getLogger("llama_index.llms").setLevel(logging.DEBUG) | |
def get_max_memory_config(max_memory_per_gpu): | |
"""Generate max_memory config for available GPUs""" | |
if torch.cuda.is_available(): | |
num_gpus = torch.cuda.device_count() | |
max_memory = {} | |
for i in range(num_gpus): | |
max_memory[i] = max_memory_per_gpu | |
return max_memory | |
return None | |
model_id = "google/gemma-3-12b-it" | |
proj_llm = HuggingFaceLLM( | |
model_name=model_id, | |
tokenizer_name=model_id, | |
device_map="auto", | |
model_kwargs={"torch_dtype": torch.float16}, | |
generate_kwargs={"temperature": 0.1, "top_p": 0.3} # More focused | |
) | |
code_llm = HuggingFaceLLM( | |
model_name="Qwen/Qwen2.5-Coder-3B-Instruct", | |
tokenizer_name="Qwen/Qwen2.5-Coder-3B-Instruct", | |
device_map: "cpu", # Specify device here instead | |
model_kwargs={ | |
"torch_dtype": torch.float32, # Use float32 for CPU | |
"low_cpu_mem_usage": True, # Memory optimization | |
}, | |
# Set generation parameters for precise, non-creative code output | |
generate_kwargs={"temperature": 0.0, "do_sample": False} | |
) | |
embed_model = HuggingFaceEmbedding( | |
model_name="llamaindex/vdr-2b-multi-v1", | |
device="cpu", | |
trust_remote_code=True, | |
model_kwargs={ | |
"torch_dtype": torch.float32, # Use float32 for CPU | |
"low_cpu_mem_usage": True, # Still get memory optimization | |
} | |
) | |
Settings.llm = proj_llm | |
Settings.embed_model = embed_model | |
Settings.callback_manager = callback_manager | |
def read_and_parse_content(input_path: str) -> List[Document]: | |
""" | |
Reads and parses content from a local file path into Document objects. | |
URL handling has been moved to search_and_extract_top_url. | |
""" | |
# Remove URL handling - this will now only handle local files | |
if not os.path.exists(input_path): | |
return [Document(text=f"Error: File not found at {input_path}")] | |
file_extension = os.path.splitext(input_path)[1].lower() | |
# Readers map | |
readers_map = { | |
'.pdf': PDFReader(), | |
'.docx': DocxReader(), | |
'.doc': DocxReader(), | |
'.csv': CSVReader(), | |
'.json': JSONReader(), | |
'.xlsx': PandasExcelReader(), | |
} | |
if file_extension in ['.mp3', '.mp4', '.wav', '.m4a', '.flac']: | |
try: | |
loader = AssemblyAIAudioTranscriptReader(file_path=input_path) | |
documents = loader.load_data() | |
return documents | |
except Exception as e: | |
return [Document(text=f"Error transcribing audio: {e}")] | |
if file_extension in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']: | |
# Load the actual image content, not just the path | |
try: | |
with open(input_path, 'rb') as f: | |
image_data = f.read() | |
return [Document( | |
text=f"IMAGE_CONTENT_BINARY", | |
metadata={ | |
"source": input_path, | |
"type": "image", | |
"path": input_path, | |
"image_data": image_data # Store actual image data | |
} | |
)] | |
except Exception as e: | |
return [Document(text=f"Error reading image: {e}")] | |
if file_extension in readers_map: | |
loader = readers_map[file_extension] | |
documents = loader.load_data(file=input_path) | |
else: | |
# Fallback for text files | |
try: | |
with open(input_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
documents = [Document(text=content, metadata={"source": input_path})] | |
except Exception as e: | |
return [Document(text=f"Error reading file as plain text: {e}")] | |
# Add source metadata | |
for doc in documents: | |
doc.metadata["source"] = input_path | |
return documents | |
class DynamicQueryEngineManager: | |
"""Single unified manager for all RAG operations - replaces the entire static approach.""" | |
def __init__(self, initial_documents: List[str] = None): | |
self.documents = [] | |
self.query_engine_tool = None | |
# Load initial documents if provided | |
if initial_documents: | |
self._load_initial_documents(initial_documents) | |
self._create_rag_tool() | |
def _load_initial_documents(self, document_paths: List[str]): | |
"""Load initial documents using read_and_parse_content.""" | |
for path in document_paths: | |
docs = read_and_parse_content(path) | |
self.documents.extend(docs) | |
print(f"Loaded {len(self.documents)} initial documents") | |
def _create_rag_tool(self): | |
"""Create RAG tool using multimodal-aware parsing.""" | |
documents = self.documents if self.documents else [ | |
Document(text="No documents loaded yet. Use web search to add content.") | |
] | |
# Separate text and image documents for proper processing | |
text_documents = [] | |
image_documents = [] | |
for doc in documents: | |
doc_type = doc.metadata.get("type", "") | |
source = doc.metadata.get("source", "").lower() | |
file_type = doc.metadata.get("file_type", "") | |
# Identify image documents | |
if (doc_type in ["image", "web_image"] or | |
file_type in ['jpg', 'png', 'jpeg', 'gif', 'bmp', 'webp'] or | |
any(ext in source for ext in ['.jpg', '.png', '.jpeg', '.gif', '.bmp', '.webp'])): | |
image_documents.append(doc) | |
else: | |
text_documents.append(doc) | |
# Use UnstructuredElementNodeParser for text content with multimodal awareness | |
element_parser = UnstructuredElementNodeParser() | |
nodes = [] | |
# Process text documents with UnstructuredElementNodeParser | |
if text_documents: | |
try: | |
text_nodes = element_parser.get_nodes_from_documents(text_documents) | |
nodes.extend(text_nodes) | |
except Exception as e: | |
print(f"Error parsing text documents with UnstructuredElementNodeParser: {e}") | |
# Fallback to simple parsing if UnstructuredElementNodeParser fails | |
from llama_index.core.node_parser import SimpleNodeParser | |
simple_parser = SimpleNodeParser.from_defaults(chunk_size=1024, chunk_overlap=200) | |
text_nodes = simple_parser.get_nodes_from_documents(text_documents) | |
nodes.extend(text_nodes) | |
# Process image documents as ImageNodes | |
if image_documents: | |
for img_doc in image_documents: | |
try: | |
image_node = ImageNode( | |
text=img_doc.text or f"Image content from {img_doc.metadata.get('source', 'unknown')}", | |
metadata=img_doc.metadata, | |
image_path=img_doc.metadata.get("path"), | |
image=img_doc.metadata.get("image_data") | |
) | |
nodes.append(image_node) | |
except Exception as e: | |
print(f"Error creating ImageNode: {e}") | |
# Fallback to regular TextNode for images | |
text_node = TextNode( | |
text=img_doc.text or f"Image content from {img_doc.metadata.get('source', 'unknown')}", | |
metadata=img_doc.metadata | |
) | |
nodes.append(text_node) | |
index = VectorStoreIndex(nodes) | |
class HybridReranker: | |
def __init__(self): | |
self.text_reranker = SentenceTransformerRerank( | |
model="cross-encoder/ms-marco-MiniLM-L-2-v2", | |
top_n=3 | |
) | |
self.visual_reranker = ColPaliRerank( | |
top_n=3, | |
model="vidore/colpali-v1.2", | |
keep_retrieval_score=True, | |
device="cpu" | |
) | |
def postprocess_nodes(self, nodes, query_bundle): | |
# Your exact implementation | |
text_nodes = [] | |
visual_nodes = [] | |
for node in nodes: | |
if (hasattr(node, 'image_path') and node.image_path) or \ | |
(hasattr(node, 'metadata') and node.metadata.get('file_type') in ['jpg', 'png', 'jpeg', 'pdf']) or \ | |
(hasattr(node, 'metadata') and node.metadata.get('type') in ['image', 'web_image']): | |
visual_nodes.append(node) | |
else: | |
text_nodes.append(node) | |
reranked_text = [] | |
reranked_visual = [] | |
if text_nodes: | |
reranked_text = self.text_reranker.postprocess_nodes(text_nodes, query_bundle) | |
if visual_nodes: | |
reranked_visual = self.visual_reranker.postprocess_nodes(visual_nodes, query_bundle) | |
combined_results = [] | |
max_len = max(len(reranked_text), len(reranked_visual)) | |
for i in range(max_len): | |
if i < len(reranked_text): | |
combined_results.append(reranked_text[i]) | |
if i < len(reranked_visual): | |
combined_results.append(reranked_visual[i]) | |
return combined_results[:5] | |
hybrid_reranker = HybridReranker() | |
query_engine = index.as_query_engine( | |
similarity_top_k=10, | |
node_postprocessors=[hybrid_reranker], | |
) | |
self.query_engine_tool = QueryEngineTool.from_defaults( | |
query_engine=query_engine, | |
name="dynamic_hybrid_multimodal_rag_tool", | |
description=( | |
"Advanced dynamic knowledge base with hybrid reranking. " | |
"Uses ColPali for visual content and SentenceTransformer for text content. " | |
"Automatically updated with web search content." | |
) | |
) | |
def add_documents(self, new_documents: List[Document]): | |
"""Add documents from web search and recreate tool.""" | |
self.documents.extend(new_documents) | |
self._create_rag_tool() # Recreate with ALL documents | |
print(f"Added {len(new_documents)} documents. Total: {len(self.documents)}") | |
def get_tool(self): | |
return self.query_engine_tool | |
# Global instance | |
dynamic_qe_manager = DynamicQueryEngineManager() | |
# 1. Create the base DuckDuckGo search tool from the official spec. | |
# This tool returns text summaries of search results, not just URLs. | |
base_duckduckgo_tool = DuckDuckGoSearchToolSpec().to_tool_list()[1] | |
def search_and_extract_content_from_url(query: str) -> List[Document]: | |
""" | |
Searches web, gets top URL, and extracts both text content and images. | |
Returns a list of Document objects containing the extracted content. | |
""" | |
# Get URL from search | |
search_results = base_duckduckgo_tool(query, max_results=1) | |
url_match = re.search(r"https?://\S+", str(search_results)) | |
if not url_match: | |
return [Document(text="No URL could be extracted from the search results.")] | |
url = url_match.group(0)[:-2] | |
documents = [] | |
try: | |
# Check if it's a YouTube URL | |
if "youtube" in urlparse(url).netloc: | |
loader = YoutubeTranscriptReader() | |
documents = loader.load_data(youtubelinks=[url]) | |
else: | |
loader = TrafilaturaWebReader(include_images=True) | |
documents = loader.load_data(urls=[url]) | |
except Exception as e: | |
# Handle any exceptions that occur during content extraction | |
return [Document(text=f"Error extracting content from URL: {str(e)}")] | |
return documents | |
def enhanced_web_search_and_update(query: str) -> str: | |
""" | |
Performs web search, extracts content, and adds it to the dynamic query engine. | |
""" | |
# Extract content from web search | |
documents = search_and_extract_content_from_url(query) | |
# Add documents to the dynamic query engine | |
if documents and not any("Error" in doc.text for doc in documents): | |
dynamic_qe_manager.add_documents(documents) | |
# Return summary of what was added | |
text_docs = [doc for doc in documents if doc.metadata.get("type") == "web_text"] | |
image_docs = [doc for doc in documents if doc.metadata.get("type") == "web_image"] | |
summary = f"Successfully added web content to knowledge base:\n" | |
summary += f"- {len(text_docs)} text documents\n" | |
summary += f"- {len(image_docs)} images\n" | |
summary += f"Source: {documents[0].metadata.get('source', 'Unknown')}" | |
return summary | |
else: | |
error_msg = documents[0].text if documents else "No content extracted" | |
return f"Failed to extract web content: {error_msg}" | |
# Create the enhanced web search tool | |
enhanced_web_search_tool = FunctionTool.from_defaults( | |
fn=enhanced_web_search_and_update, | |
name="enhanced_web_search", | |
description="Search the web, extract content and images, and add them to the knowledge base for future queries." | |
) | |
def safe_import(module_name): | |
"""Safely import a module, return None if not available""" | |
try: | |
return __import__(module_name) | |
except ImportError: | |
return None | |
safe_globals = { | |
"__builtins__": { | |
"len": len, "str": str, "int": int, "float": float, | |
"list": list, "dict": dict, "sum": sum, "max": max, "min": min, | |
"round": round, "abs": abs, "sorted": sorted, "enumerate": enumerate, | |
"range": range, "zip": zip, "map": map, "filter": filter, | |
"any": any, "all": all, "type": type, "isinstance": isinstance, | |
"print": print, "open": open, "bool": bool, "set": set, "tuple": tuple | |
} | |
} | |
# Core modules (always available) | |
core_modules = [ | |
"math", "datetime", "re", "os", "sys", "json", "csv", "random", | |
"itertools", "collections", "functools", "operator", "copy", | |
"decimal", "fractions", "uuid", "typing", "statistics", "pathlib", | |
"glob", "shutil", "tempfile", "pickle", "gzip", "zipfile", "tarfile", | |
"base64", "hashlib", "secrets", "hmac", "textwrap", "string", | |
"difflib", "socket", "ipaddress", "logging", "warnings", "traceback", | |
"pprint", "threading", "queue", "sqlite3", "urllib", "html", "xml", | |
"configparser" | |
] | |
for module in core_modules: | |
imported = safe_import(module) | |
if imported: | |
safe_globals[module] = imported | |
# Data science modules (may not be available) | |
optional_modules = { | |
"numpy": "numpy", | |
"np": "numpy", | |
"pandas": "pandas", | |
"pd": "pandas", | |
"scipy": "scipy", | |
"matplotlib": "matplotlib", | |
"plt": "matplotlib.pyplot", | |
"seaborn": "seaborn", | |
"sns": "seaborn", | |
"plotly": "plotly", | |
"sklearn": "sklearn", | |
"statsmodels": "statsmodels", | |
"PIL": "PIL", | |
"skimage": "skimage", | |
"pytz": "pytz", | |
"requests": "requests", | |
"bs4": "bs4", | |
"sympy": "sympy", | |
"tqdm": "tqdm", | |
"yaml": "yaml", | |
"toml": "toml" | |
} | |
for alias, module_name in optional_modules.items(): | |
imported = safe_import(module_name) | |
if imported: | |
safe_globals[alias] = imported | |
# Special cases | |
if safe_globals.get("bs4"): | |
safe_globals["BeautifulSoup"] = safe_globals["bs4"].BeautifulSoup | |
if safe_globals.get("PIL"): | |
image_module = safe_import("PIL.Image") | |
if image_module: | |
safe_globals["Image"] = image_module | |
def execute_python_code(code: str) -> str: | |
try: | |
exec_locals = {} | |
exec(code, safe_globals, exec_locals) | |
if 'result' in exec_locals: | |
return str(exec_locals['result']) | |
else: | |
return "Code executed successfully" | |
except Exception as e: | |
return f"Code execution failed: {str(e)}" | |
code_execution_tool = FunctionTool.from_defaults( | |
fn=execute_python_code, | |
name="Python Code Execution", | |
description="Executes Python code safely for calculations and data processing" | |
) | |
def clean_response(response: str) -> str: | |
"""Clean response by removing common prefixes""" | |
response_clean = response.strip() | |
prefixes_to_remove = [ | |
"FINAL ANSWER:", "Answer:", "The answer is:", | |
"Based on my analysis,", "After reviewing,", | |
"The result is:", "Final result:", "According to", | |
"In conclusion,", "Therefore,", "Thus," | |
] | |
for prefix in prefixes_to_remove: | |
if response_clean.startswith(prefix): | |
response_clean = response_clean[len(prefix):].strip() | |
return response_clean | |
def llm_reformat(response: str, question: str) -> str: | |
"""Use LLM to reformat the response according to GAIA requirements""" | |
format_prompt = f"""Extract the exact answer from the response below. Follow GAIA formatting rules strictly. | |
GAIA Format Rules: | |
- ONLY the precise answer, no explanations | |
- No prefixes like "Answer:", "The result is:", etc. | |
- For numbers: just the number (e.g., "156", "3.14e+8") | |
- For names: just the name (e.g., "Martinez", "Sarah") | |
- For lists: comma-separated (e.g., "C++, Java, Python") | |
- For country codes: just the code (e.g., "FRA", "US") | |
- For yes/no: just "Yes" or "No" | |
Examples: | |
Question: "How many papers were published?" | |
Response: "The analysis shows 156 papers were published in total." | |
Answer: 156 | |
Question: "What is the last name of the developer?" | |
Response: "The developer mentioned is Dr. Sarah Martinez from the AI team." | |
Answer: Martinez | |
Question: "List programming languages, alphabetized:" | |
Response: "The languages mentioned are Python, Java, and C++. Alphabetized: C++, Java, Python" | |
Answer: C++, Java, Python | |
Now extract the exact answer: | |
Question: {question} | |
Response: {response} | |
Answer:""" | |
try: | |
# Use the global LLM instance | |
formatting_response = proj_llm.complete(format_prompt) | |
answer = str(formatting_response).strip() | |
# Extract just the answer after "Answer:" | |
if "Answer:" in answer: | |
answer = answer.split("Answer:")[-1].strip() | |
return answer | |
except Exception as e: | |
print(f"LLM reformatting failed: {e}") | |
return response | |
def final_answer_tool(agent_response: str, question: str) -> str: | |
""" | |
Simplified final answer tool using only LLM reformatting. | |
Args: | |
agent_response: The raw response from agent reasoning | |
question: The original question for context | |
Returns: | |
Exact answer in GAIA format | |
""" | |
# Step 1: Clean the response | |
cleaned_response = clean_response(agent_response) | |
# Step 2: Use LLM reformatting | |
formatted_answer = llm_reformat(cleaned_response, question) | |
print(f"Original response cleaned: {cleaned_response[:100]}...") | |
print(f"LLM formatted answer: {formatted_answer}") | |
return formatted_answer | |
class EnhancedGAIAAgent: | |
def __init__(self): | |
print("Initializing Enhanced GAIA Agent...") | |
# Vérification du token HuggingFace | |
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
if not hf_token: | |
print("Warning: HUGGINGFACEHUB_API_TOKEN not found, some features may not work") | |
# Initialize the dynamic query engine manager | |
self.dynamic_qe_manager = DynamicQueryEngineManager() | |
# Create enhanced agents with dynamic tools | |
self.external_knowledge_agent = ReActAgent( | |
name="external_knowledge_agent", | |
description="Advanced information retrieval with dynamic knowledge base", | |
system_prompt="""You are an advanced information specialist with a sophisticated RAG system. | |
Your knowledge base uses hybrid reranking and grows dynamically with each web search and document addition. | |
Always add relevant content to your knowledge base, then query it for answers.""", | |
tools=[ | |
enhanced_web_search_tool, | |
self.dynamic_qe_manager.get_tool(), | |
code_execution_tool | |
], | |
llm=proj_llm, | |
max_steps=8, | |
verbose=True, | |
callback_manager=callback_manager, | |
) | |
self.code_agent = ReActAgent( | |
name="code_agent", | |
description="Handles Python code for calculations and data processing", | |
system_prompt="You are a Python programming specialist. You work with Python code to perform calculations, data analysis, and mathematical operations.", | |
tools=[code_execution_tool], | |
llm=code_llm, | |
max_steps=6, | |
verbose=True, | |
callback_manager=callback_manager, | |
) | |
# Fixed indentation: coordinator initialization inside __init__ | |
self.coordinator = AgentWorkflow( | |
agents=[self.external_knowledge_agent, self.code_agent], | |
root_agent="external_knowledge_agent" | |
) | |
def download_gaia_file(self, task_id: str, api_url: str = "https://agents-course-unit4-scoring.hf.space") -> str: | |
"""Download file associated with task_id""" | |
try: | |
response = requests.get(f"{api_url}/files/{task_id}", timeout=30) | |
response.raise_for_status() | |
filename = f"task_{task_id}_file" | |
with open(filename, 'wb') as f: | |
f.write(response.content) | |
return filename | |
except Exception as e: | |
print(f"Failed to download file for task {task_id}: {e}") | |
return None | |
def add_documents_to_knowledge_base(self, file_path: str): | |
"""Add downloaded GAIA documents to the dynamic knowledge base""" | |
try: | |
documents = read_and_parse_content(file_path) | |
if documents: | |
self.dynamic_qe_manager.add_documents(documents) | |
print(f"Added {len(documents)} documents from {file_path} to dynamic knowledge base") | |
# Update the agent's tools with the refreshed query engine | |
self.external_knowledge_agent.tools = [ | |
enhanced_web_search_tool, | |
self.dynamic_qe_manager.get_tool(), # Get the updated tool | |
code_execution_tool | |
] | |
return True | |
except Exception as e: | |
print(f"Failed to add documents from {file_path}: {e}") | |
return False | |
async def solve_gaia_question(self, question_data: Dict[str, Any]) -> str: | |
""" | |
Solve GAIA question with dynamic knowledge base integration | |
""" | |
question = question_data.get("Question", "") | |
task_id = question_data.get("task_id", "") | |
# Try to download and add file to knowledge base if task_id provided | |
file_path = None | |
if task_id: | |
try: | |
file_path = self.download_gaia_file(task_id) | |
if file_path: | |
# Add documents to dynamic knowledge base | |
self.add_documents_to_knowledge_base(file_path) | |
print(f"Successfully integrated GAIA file into dynamic knowledge base") | |
except Exception as e: | |
print(f"Failed to download/process file for task {task_id}: {e}") | |
# Enhanced context prompt with dynamic knowledge base awareness | |
context_prompt = f""" | |
GAIA Task ID: {task_id} | |
Question: {question} | |
{f'File processed and added to knowledge base: {file_path}' if file_path else 'No additional files'} | |
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.""" | |
try: | |
ctx = Context(self.coordinator) | |
print("=== AGENT REASONING STEPS ===") | |
print(f"Dynamic knowledge base contains {len(self.dynamic_qe_manager.documents)} documents") | |
handler = self.coordinator.run(ctx=ctx, user_msg=context_prompt) | |
full_response = "" | |
async for event in handler.stream_events(): | |
if isinstance(event, AgentStream): | |
print(event.delta, end="", flush=True) | |
full_response += event.delta | |
final_response = await handler | |
print("\n=== END REASONING ===") | |
# Extract the final formatted answer | |
final_answer = str(final_response).strip() | |
print(f"Final GAIA formatted answer: {final_answer}") | |
print(f"Knowledge base now contains {len(self.dynamic_qe_manager.documents)} documents") | |
return final_answer | |
except Exception as e: | |
error_msg = f"Error processing question: {str(e)}" | |
print(error_msg) | |
return error_msg | |
def get_knowledge_base_stats(self): | |
"""Get statistics about the current knowledge base""" | |
return { | |
"total_documents": len(self.dynamic_qe_manager.documents), | |
"document_sources": [doc.metadata.get("source", "Unknown") for doc in self.dynamic_qe_manager.documents] | |
} |