Coool2 commited on
Commit
c1a86cd
·
verified ·
1 Parent(s): fa9ef10

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +6 -18
agent.py CHANGED
@@ -174,15 +174,10 @@ def read_and_parse_content(input_path: str) -> List[Document]:
174
  return documents
175
 
176
  # --- Create the final LlamaIndex Tool from the completed function ---
177
- read_and_parse_tool = FunctionTool.from_defaults(
178
- fn=read_and_parse_content,
179
- name="read_and_parse_tool",
180
- description=(
181
- "Use this tool to read and extract content from any given file or URL. "
182
- "It handles PDF, DOCX, CSV, JSON, XLSX, and image files, as well as web pages, "
183
- "YouTube videos (transcripts), and MP3 audio (transcripts). It also reads plain text "
184
- "from files like .py or .txt. The input MUST be a single valid file path or a URL."
185
- )
186
  )
187
 
188
  def create_rag_tool_fn(documents: List[Document], query: str = None) -> Union[QueryEngineTool, str]:
@@ -274,16 +269,9 @@ def information_retrieval_fn (paths : List[str], query : str = None) -> Union[Q
274
  information_retrieval_tool = FunctionTool.from_defaults(
275
  fn=information_retrieval_fn,
276
  name="information_retrieval_tool",
277
- description=(
278
- "This is the BEST and OPTIMAL tool to query information from documents parsed from URLs or files. "
279
- "Use this tool to build a Retrieval Augmented Generation (RAG) engine from documents AND optionally query it immediately. "
280
- "Input: documents (list of documents) and optional query parameter. "
281
- "If no query is provided: creates and returns a RAG query engine tool for later use. "
282
- "If query is provided: creates the RAG engine AND immediately returns the answer to your question. "
283
- "ALWAYS use this tool when you need to retrieve specific information from documents obtained via URLs or file. "
284
- "This dual-mode tool enables both RAG engine creation and direct question-answering in one step, making it the most efficient approach for document-based information retrieval."
285
- )
286
  )
 
287
  # 1. Create the base DuckDuckGo search tool from the official spec.
288
  # This tool returns text summaries of search results, not just URLs.
289
  base_duckduckgo_tool = DuckDuckGoSearchToolSpec().to_tool_list()[1]
 
174
  return documents
175
 
176
  # --- Create the final LlamaIndex Tool from the completed function ---
177
+ extract_url_tool = FunctionTool.from_defaults(
178
+ fn=search_and_extract_top_url,
179
+ name="extract_url_tool",
180
+ description="Searches web and returns a relevant URL based on a query"
 
 
 
 
 
181
  )
182
 
183
  def create_rag_tool_fn(documents: List[Document], query: str = None) -> Union[QueryEngineTool, str]:
 
269
  information_retrieval_tool = FunctionTool.from_defaults(
270
  fn=information_retrieval_fn,
271
  name="information_retrieval_tool",
272
+ description="Retrieves and queries information from documents, URLs, or files using RAG"
 
 
 
 
 
 
 
 
273
  )
274
+
275
  # 1. Create the base DuckDuckGo search tool from the official spec.
276
  # This tool returns text summaries of search results, not just URLs.
277
  base_duckduckgo_tool = DuckDuckGoSearchToolSpec().to_tool_list()[1]