# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict import fire from tqdm import tqdm from weclone.utils.log import logger from llamafactory.data import get_dataset, get_template_and_fix_tokenizer from llamafactory.hparams import get_train_args from llamafactory.model import load_tokenizer def length_cdf( model_name_or_path: str = "./Qwen2.5-7B-Instruct", dataset: str = "wechat-sft", dataset_dir: str = "./dataset/res_csv/sft", template: str = "qwen", interval: int = 256, ): r"""Calculate the distribution of the input lengths in the dataset. Usage: export CUDA_VISIBLE_DEVICES=0 python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en_demo --template default """ logger.info("开始计算cutoff_len......") model_args, data_args, training_args, _, _ = get_train_args( { "stage": "sft", "model_name_or_path": model_name_or_path, "dataset": dataset, "dataset_dir": dataset_dir, "template": template, "cutoff_len": 1_000_000, "preprocessing_num_workers": 16, "output_dir": "dummy_dir", "overwrite_cache": True, "do_train": True, } ) tokenizer_module = load_tokenizer(model_args) template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args) # type: ignore trainset = get_dataset(template, model_args, data_args, training_args, "sft", **tokenizer_module)["train_dataset"] # type: ignore total_num = len(trainset) # type: ignore length_dict = defaultdict(int) for sample in tqdm(trainset["input_ids"], desc="Collecting lengths"): # type: ignore length_dict[len(sample) // interval * interval] += 1 length_tuples = list(length_dict.items()) length_tuples.sort() count_accu, prob_accu = 0, 0 logger.info(" cutoff_len设置建议:") for length, count in length_tuples: count_accu += count prob_accu += count / total_num * 100 logger.success(f"{count_accu:d} ({prob_accu:.2f}%) samples have length < {length + interval}.") if __name__ == "__main__": fire.Fire(length_cdf)