Spaces:
Runtime error
Runtime error
File size: 1,491 Bytes
a9bca27 a90d3f5 a9bca27 a90d3f5 a9bca27 a90d3f5 a9bca27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Define constants
MODEL_NAME = "Ct1tz/Codebert-Base-B2D4G5"
MAX_LENGTH = 512
# Load the tokenizer with error handling
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, model_max_length=MAX_LENGTH, trust_remote_code=True)
print(f"Tokenizer vocabulary size: {len(tokenizer)}")
print(f"Tokenizer type: {tokenizer.__class__.__name__}")
except Exception as e:
print(f"Error loading tokenizer: {e}")
raise
# Load the model with error handling
try:
# Load the model (using AutoModelForCausalLM for chat/generation tasks)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True
)
except Exception as e:
print(f"Error loading model: {e}")
raise
# Define a chat function
def chat(input_text, history=[]):
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=MAX_LENGTH)
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
history.append((input_text, response))
return history, history
# Create Gradio chat interface
interface = gr.ChatInterface(
fn=chat,
title="CodeBERT Chat",
description="Chat with the CodeBERT model (Ct1tz/Codebert-Base-B2D4G5) for code-related tasks.",
theme="soft"
)
# Launch the interface
if __name__ == "__main__":
interface.launch() |