Spaces:
Sleeping
Sleeping
File size: 1,867 Bytes
1bbc659 1f57e1d 3618b07 1bbc659 1f57e1d 3618b07 5d7e04d 1f57e1d 5d7e04d 1f57e1d 3618b07 5d7e04d 1f57e1d 1bbc659 1f57e1d 1bbc659 3618b07 1f57e1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
import logging
# Set up logging to capture detailed errors
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load the model and tokenizer
model_id = "Ct1tz/Codebert-Base-B2D4G5"
try:
logger.info("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
model_id,
use_fast=False, # Explicitly use slow tokenizer (RobertaTokenizer)
force_download=True, # Force redownload to avoid corrupted cache
cache_dir=None # Use default cache
)
logger.info("Tokenizer loaded successfully.")
except Exception as e:
logger.error(f"Failed to load tokenizer: {str(e)}")
raise
try:
logger.info("Loading model...")
model = AutoModelForSequenceClassification.from_pretrained(model_id)
logger.info("Model loaded successfully.")
except Exception as e:
logger.error(f"Failed to load model: {str(e)}")
raise
# Create a text classification pipeline
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
# Define the prediction function for Gradio
def predict(text):
try:
# Get prediction
result = classifier(text)
# Format the output
return f"Label: {result[0]['label']}, Score: {result[0]['score']:.4f}"
except Exception as e:
return f"Prediction error: {str(e)}"
# Create Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.Textbox(lines=2, placeholder="Enter text here (e.g., 'I like you. I love you')"),
outputs="text",
title="Text Classification with Codebert",
description="Enter text to classify using the Ct1tz/Codebert-Base-B2D4G5 model."
)
# Launch the app
if __name__ == "__main__":
logger.info("Launching Gradio interface...")
iface.launch() |