script-to-keyframe / utils /keyframe_utils.py
qqwjq1981's picture
Update utils/keyframe_utils.py
af5ead2 verified
import os
import json
from pathlib import Path
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
import torch
from PIL import Image
from openai import OpenAI
client = OpenAI()
# Global story context
story_context_cn = "《博物馆的全能ACE》是一部拟人化博物馆文物与AI讲解助手互动的短片,讲述太阳人石刻在闭馆后的博物馆中,遇到了新来的AI助手博小翼,两者展开对话,AI展示了自己的多模态讲解能力与文化知识,最终被文物们认可,并一起展开智慧导览服务的故事。该片融合了文物拟人化、夜间博物馆奇妙氛围、科技感界面与中国地方文化元素,风格活泼、具未来感。"
# Cache and log directories
CACHE_DIR = Path("prompt_cache")
CACHE_DIR.mkdir(exist_ok=True)
LOG_PATH = Path("prompt_log.jsonl")
# Pipelines
pipe_txt2img = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16).to("cpu")
pipe_img2img = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16).to("cpu")
# Reference image context for characters
REFERENCE_CONTEXT = "参考角色视觉信息:'太阳人石刻' 是带有放射状头饰、佩戴墨镜的新石器时代人物形象,风格庄严中略带潮流感。图像见 assets/sunman.png。'博小翼' 是一个圆头圆眼、漂浮型的可爱AI机器人助手,风格拟人、语气亲切,图像见 assets/boxiaoyi.png。"
# Reference image map
ASSET_IMAGES = {
"太阳人": "assets/sunman.png",
"博小翼": "assets/boxiaoyi.png"
}
def generate_keyframe_prompt(segment):
segment_id = segment.get("segment_id")
cache_file = CACHE_DIR / f"segment_{segment_id}.json"
if cache_file.exists():
with open(cache_file, "r", encoding="utf-8") as f:
return json.load(f)
description = segment.get("description", "")
speaker = segment.get("speaker", "")
narration = segment.get("narration", "")
input_prompt = f"你是一个擅长视觉脚本设计的AI,请基于以下故事整体背景与分镜内容,帮我生成一个适合用于Stable Diffusion图像生成的英文提示词(image prompt),用于生成低分辨率草图风格的关键帧。请注意突出主要角色、镜头氛围、光影、构图、动作,避免复杂背景和细节。提示词长度不应超过80词,以防止超出Stable Diffusion的token限制。\n\n【整体故事背景】:\n{story_context_cn}\n\n【当前分镜描述】:\n{description}\n【角色】:{speaker}\n【台词或画外音】:{narration}\n\n{REFERENCE_CONTEXT}\n\n请用英文输出一个简洁但具体的prompt,风格偏草图、线稿、卡通、简洁构图,并指出一个negative prompt。"
try:
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are an expert visual prompt designer for image generation."},
{"role": "user", "content": input_prompt}
],
temperature=0.7
)
output_text = response.choices[0].message.content
if "Negative prompt:" in output_text:
prompt, negative = output_text.split("Negative prompt:", 1)
else:
prompt, negative = output_text, "blurry, distorted, low quality, text, watermark"
result = {
"prompt": prompt.strip(),
"negative_prompt": negative.strip()
}
with open(cache_file, "w", encoding="utf-8") as f:
json.dump(result, f, ensure_ascii=False, indent=2)
with open(LOG_PATH, "a", encoding="utf-8") as logf:
logf.write(json.dumps({"segment_id": segment_id, **result}, ensure_ascii=False) + "\n")
return result
except Exception as e:
print(f"[Error] GPT-4o prompt generation failed for segment {segment_id}: {e}")
return {
"prompt": description,
"negative_prompt": ""
}
def generate_all_keyframe_images(script_data, output_dir="keyframes"):
os.makedirs(output_dir, exist_ok=True)
keyframe_outputs = []
for segment in script_data:
sd_prompts = generate_keyframe_prompt(segment)
prompt = sd_prompts["prompt"]
negative_prompt = sd_prompts["negative_prompt"]
segment_id = segment.get("segment_id")
description = segment.get("description", "")
use_reference = any(name in description for name in ASSET_IMAGES)
if use_reference:
ref_key = next(k for k in ASSET_IMAGES if k in description)
init_image = Image.open(ASSET_IMAGES[ref_key]).convert("RGB").resize((512, 512))
frame_images = []
for i in range(3):
if use_reference:
image = pipe_img2img(prompt=prompt, image=init_image, negative_prompt=negative_prompt, strength=0.6, guidance_scale=7.5).images[0]
else:
image = pipe_txt2img(prompt, negative_prompt=negative_prompt, num_inference_steps=20, guidance_scale=7.5, height=256, width=256).images[0]
image_path = os.path.join(output_dir, f"segment_{segment_id}_v{i+1}.png")
image.save(image_path)
frame_images.append(image_path)
keyframe_outputs.append({
"segment_id": segment_id,
"prompt": prompt,
"negative_prompt": negative_prompt,
"frame_images": frame_images
})
print(f"✓ Generated 3 images for Segment {segment_id} ({'img2img' if use_reference else 'txt2img'})")
with open("all_prompts_output.json", "w", encoding="utf-8") as f:
json.dump(keyframe_outputs, f, ensure_ascii=False, indent=2)
return keyframe_outputs