Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -38,7 +38,9 @@ import wave
|
|
38 |
import librosa
|
39 |
import noisereduce as nr
|
40 |
import soundfile as sf
|
41 |
-
|
|
|
|
|
42 |
|
43 |
logger = logging.getLogger(__name__)
|
44 |
|
@@ -511,70 +513,141 @@ def solve_optimal_alignment(original_segments, generated_durations, total_durati
|
|
511 |
|
512 |
return original_segments
|
513 |
|
514 |
-
def
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
578 |
|
579 |
def process_entry(entry, i, tts_model, video_width, video_height, process_mode, target_language, font_path, speaker_sample_paths=None):
|
580 |
logger.debug(f"Processing entry {i}: {entry}")
|
|
|
38 |
import librosa
|
39 |
import noisereduce as nr
|
40 |
import soundfile as sf
|
41 |
+
from paddleocr import PaddleOCR
|
42 |
+
import cv2
|
43 |
+
from rapidfuzz import fuzz
|
44 |
|
45 |
logger = logging.getLogger(__name__)
|
46 |
|
|
|
513 |
|
514 |
return original_segments
|
515 |
|
516 |
+
def extract_subtitles_with_ocr(video_path):
|
517 |
+
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # Change `lang` as needed
|
518 |
+
vidcap = cv2.VideoCapture(video_path)
|
519 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
520 |
+
|
521 |
+
subtitles = []
|
522 |
+
frame_id = 0
|
523 |
+
success, image = vidcap.read()
|
524 |
+
|
525 |
+
while success:
|
526 |
+
if frame_id % int(fps) == 0: # OCR 1 frame per second (adjust if needed)
|
527 |
+
result = ocr.ocr(image, cls=True)
|
528 |
+
texts = [line[1][0] for line in result[0]] # Get text parts
|
529 |
+
combined_text = " ".join(texts).strip()
|
530 |
+
if combined_text:
|
531 |
+
subtitles.append({
|
532 |
+
"time": frame_id / fps,
|
533 |
+
"text": combined_text
|
534 |
+
})
|
535 |
+
|
536 |
+
frame_id += 1
|
537 |
+
success, image = vidcap.read()
|
538 |
+
|
539 |
+
vidcap.release()
|
540 |
+
return subtitles
|
541 |
+
|
542 |
+
def align_subtitles_to_transcripts(ocr_subtitles, whisperx_segments):
|
543 |
+
aligned_pairs = []
|
544 |
+
|
545 |
+
for ocr_entry in ocr_subtitles:
|
546 |
+
ocr_time = ocr_entry["time"]
|
547 |
+
best_score = -1
|
548 |
+
best_segment = None
|
549 |
+
|
550 |
+
for seg in whisperx_segments:
|
551 |
+
# Only consider segments close in time (within +/- 2s)
|
552 |
+
if abs(seg["start"] - ocr_time) < 2.0 or abs(seg["end"] - ocr_time) < 2.0:
|
553 |
+
score = fuzz.ratio(seg["text"], ocr_entry["text"])
|
554 |
+
if score > best_score:
|
555 |
+
best_score = score
|
556 |
+
best_segment = seg
|
557 |
+
|
558 |
+
if best_segment:
|
559 |
+
aligned_pairs.append({
|
560 |
+
"whisper_text": best_segment["text"],
|
561 |
+
"ocr_text": ocr_entry["text"],
|
562 |
+
"start": best_segment["start"],
|
563 |
+
"end": best_segment["end"],
|
564 |
+
"similarity": best_score
|
565 |
+
})
|
566 |
+
|
567 |
+
return aligned_pairs
|
568 |
+
|
569 |
+
def correct_transcripts_with_ocr(aligned_pairs):
|
570 |
+
corrected_segments = []
|
571 |
+
|
572 |
+
for pair in aligned_pairs:
|
573 |
+
if pair["similarity"] > 80:
|
574 |
+
# Trust OCR more if they are close
|
575 |
+
corrected_text = pair["ocr_text"]
|
576 |
+
else:
|
577 |
+
corrected_text = pair["whisper_text"]
|
578 |
+
|
579 |
+
corrected_segments.append({
|
580 |
+
"start": pair["start"],
|
581 |
+
"end": pair["end"],
|
582 |
+
"text": corrected_text
|
583 |
+
})
|
584 |
+
|
585 |
+
return corrected_segments
|
586 |
+
|
587 |
+
# def get_frame_image_bytes(video, t):
|
588 |
+
# frame = video.get_frame(t)
|
589 |
+
# img = Image.fromarray(frame)
|
590 |
+
# buf = io.BytesIO()
|
591 |
+
# img.save(buf, format='JPEG')
|
592 |
+
# return buf.getvalue()
|
593 |
+
|
594 |
+
# def post_edit_segment(entry, image_bytes):
|
595 |
+
# try:
|
596 |
+
# system_prompt = """You are a multilingual assistant helping polish subtitles and voiceover content.
|
597 |
+
# Your job is to fix punctuation, validate meaning, improve tone, and ensure the translation matches the speaker's intended message."""
|
598 |
+
|
599 |
+
# user_prompt = f"""
|
600 |
+
# Original (source) transcript: {entry.get("original", "")}
|
601 |
+
# Translated version: {entry.get("translated", "")}
|
602 |
+
# Speaker ID: {entry.get("speaker", "")}
|
603 |
+
# Time: {entry.get("start")} - {entry.get("end")}
|
604 |
+
|
605 |
+
# Please:
|
606 |
+
# 1. Add correct punctuation and sentence boundaries.
|
607 |
+
# 2. Improve fluency and tone of the translated text.
|
608 |
+
# 3. Ensure the meaning is preserved from the original.
|
609 |
+
# 4. Use the attached image frame to infer emotion or setting.
|
610 |
+
|
611 |
+
# Return the revised original and translated texts in the following format:
|
612 |
+
# Original: <edited original>
|
613 |
+
# Translated: <edited translation>
|
614 |
+
# """
|
615 |
+
# response = ChatCompletion.create(
|
616 |
+
# model="gpt-4o",
|
617 |
+
# messages=[
|
618 |
+
# {"role": "system", "content": system_prompt},
|
619 |
+
# {"role": "user", "content": user_prompt, "image": image_bytes}
|
620 |
+
# ]
|
621 |
+
# )
|
622 |
+
|
623 |
+
# output = response.choices[0].message.content.strip()
|
624 |
+
# lines = output.splitlines()
|
625 |
+
# for line in lines:
|
626 |
+
# if line.startswith("Original:"):
|
627 |
+
# entry['original'] = line[len("Original:"):].strip()
|
628 |
+
# elif line.startswith("Translated:"):
|
629 |
+
# entry['translated'] = line[len("Translated:"):].strip()
|
630 |
+
|
631 |
+
# return entry
|
632 |
+
# except Exception as e:
|
633 |
+
# print(f"Post-editing failed for segment: {e}")
|
634 |
+
# return entry
|
635 |
+
|
636 |
+
|
637 |
+
# def post_edit_translated_segments(translated_json, video_path):
|
638 |
+
# video = VideoFileClip(video_path)
|
639 |
+
|
640 |
+
# def process(entry):
|
641 |
+
# mid_time = (entry['start'] + entry['end']) / 2
|
642 |
+
# image_bytes = get_frame_image_bytes(video, mid_time)
|
643 |
+
# entry = post_edit_segment(entry, image_bytes)
|
644 |
+
# return entry
|
645 |
+
|
646 |
+
# with concurrent.futures.ThreadPoolExecutor() as executor:
|
647 |
+
# edited = list(executor.map(process, translated_json))
|
648 |
+
|
649 |
+
# video.close()
|
650 |
+
# return edited
|
651 |
|
652 |
def process_entry(entry, i, tts_model, video_width, video_height, process_mode, target_language, font_path, speaker_sample_paths=None):
|
653 |
logger.debug(f"Processing entry {i}: {entry}")
|