Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -220,53 +220,84 @@ def transcribe_video_with_speakers(video_path):
|
|
220 |
}
|
221 |
for segment in result["segments"]
|
222 |
]
|
223 |
-
|
224 |
# Collect audio for each speaker
|
225 |
speaker_audio = {}
|
226 |
-
|
|
|
|
|
227 |
speaker = segment["speaker"]
|
228 |
-
end = segment["end"]
|
229 |
start = segment["start"]
|
|
|
|
|
230 |
if end > start and (end - start) > 0.05: # Require >50ms duration
|
231 |
if speaker not in speaker_audio:
|
232 |
-
speaker_audio[speaker] = [(
|
233 |
else:
|
234 |
-
speaker_audio[speaker].append((
|
|
|
|
|
|
|
|
|
|
|
235 |
# Collapse and truncate speaker audio
|
236 |
speaker_sample_paths = {}
|
237 |
audio_clip = AudioFileClip(speech_audio_path)
|
|
|
|
|
|
|
238 |
for speaker, segments in speaker_audio.items():
|
|
|
|
|
239 |
speaker_clips = [audio_clip.subclip(start, end) for start, end in segments]
|
240 |
-
# Add a check to ensure speaker_clips is not empty
|
241 |
if not speaker_clips:
|
242 |
-
logger.warning(f"No valid audio
|
243 |
-
continue
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
truncated_clip = combined_clip.subclip(0, min(30, combined_clip.duration))
|
|
|
247 |
|
248 |
# Step 1: Get audio array from the clip
|
249 |
fps = 16000 # target sampling rate
|
250 |
audio_array = truncated_clip.to_soundarray(fps=fps)
|
251 |
-
|
252 |
-
# If stereo → convert to mono
|
253 |
if audio_array.ndim == 2:
|
|
|
254 |
audio_array = np.mean(audio_array, axis=1)
|
255 |
-
|
256 |
# Step 2: Apply denoising
|
257 |
denoised_audio_array = denoise_audio_array(audio_array, sr=fps)
|
258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
# Step 3: Save denoised audio directly
|
260 |
sample_path = f"speaker_{speaker}_sample.wav"
|
261 |
sf.write(sample_path, denoised_audio_array, fps)
|
262 |
-
|
263 |
speaker_sample_paths[speaker] = sample_path
|
264 |
-
logger.info(f"Created sample for {speaker}: {sample_path}")
|
265 |
-
|
266 |
-
#
|
|
|
267 |
video.close()
|
268 |
audio_clip.close()
|
269 |
os.remove(speech_audio_path)
|
|
|
270 |
|
271 |
return transcript_with_speakers, detected_language
|
272 |
|
|
|
220 |
}
|
221 |
for segment in result["segments"]
|
222 |
]
|
223 |
+
|
224 |
# Collect audio for each speaker
|
225 |
speaker_audio = {}
|
226 |
+
logger.info("🔎 Start collecting valid audio segments per speaker...")
|
227 |
+
|
228 |
+
for idx, segment in enumerate(result["segments"]):
|
229 |
speaker = segment["speaker"]
|
|
|
230 |
start = segment["start"]
|
231 |
+
end = segment["end"]
|
232 |
+
|
233 |
if end > start and (end - start) > 0.05: # Require >50ms duration
|
234 |
if speaker not in speaker_audio:
|
235 |
+
speaker_audio[speaker] = [(start, end)]
|
236 |
else:
|
237 |
+
speaker_audio[speaker].append((start, end))
|
238 |
+
|
239 |
+
logger.debug(f"Segment {idx}: Added to speaker {speaker} [{start:.2f}s → {end:.2f}s]")
|
240 |
+
else:
|
241 |
+
logger.warning(f"⚠️ Segment {idx} discarded: invalid duration ({start:.2f}s → {end:.2f}s)")
|
242 |
+
|
243 |
# Collapse and truncate speaker audio
|
244 |
speaker_sample_paths = {}
|
245 |
audio_clip = AudioFileClip(speech_audio_path)
|
246 |
+
|
247 |
+
logger.info(f"🔎 Found {len(speaker_audio)} speakers with valid segments. Start creating speaker samples...")
|
248 |
+
|
249 |
for speaker, segments in speaker_audio.items():
|
250 |
+
logger.info(f"🔹 Speaker {speaker}: {len(segments)} valid segments")
|
251 |
+
|
252 |
speaker_clips = [audio_clip.subclip(start, end) for start, end in segments]
|
|
|
253 |
if not speaker_clips:
|
254 |
+
logger.warning(f"⚠️ No valid audio clips for speaker {speaker}. Skipping sample creation.")
|
255 |
+
continue
|
256 |
+
|
257 |
+
if len(speaker_clips) == 1:
|
258 |
+
logger.debug(f"Speaker {speaker}: Only one clip, skipping concatenation.")
|
259 |
+
combined_clip = speaker_clips[0]
|
260 |
+
else:
|
261 |
+
logger.debug(f"Speaker {speaker}: Concatenating {len(speaker_clips)} clips.")
|
262 |
+
combined_clip = concatenate_audioclips(speaker_clips)
|
263 |
+
|
264 |
truncated_clip = combined_clip.subclip(0, min(30, combined_clip.duration))
|
265 |
+
logger.debug(f"Speaker {speaker}: Truncated to {truncated_clip.duration:.2f} seconds.")
|
266 |
|
267 |
# Step 1: Get audio array from the clip
|
268 |
fps = 16000 # target sampling rate
|
269 |
audio_array = truncated_clip.to_soundarray(fps=fps)
|
270 |
+
|
|
|
271 |
if audio_array.ndim == 2:
|
272 |
+
logger.debug(f"Speaker {speaker}: Stereo detected, converting to mono.")
|
273 |
audio_array = np.mean(audio_array, axis=1)
|
274 |
+
|
275 |
# Step 2: Apply denoising
|
276 |
denoised_audio_array = denoise_audio_array(audio_array, sr=fps)
|
277 |
|
278 |
+
if isinstance(denoised_audio_array, (list, tuple)):
|
279 |
+
logger.debug(f"Speaker {speaker}: Denoising returned a sequence, concatenating.")
|
280 |
+
# Concatenate the arrays along the first axis (samples)
|
281 |
+
try:
|
282 |
+
denoised_audio_array = np.concatenate(denoised_audio_array, axis=0)
|
283 |
+
except ValueError as e:
|
284 |
+
logger.error(f"Failed to concatenate denoised audio segments for {speaker}: {e}")
|
285 |
+
# Decide how to handle this - maybe skip saving the sample?
|
286 |
+
continue # Skip saving this sample if concatenation fails
|
287 |
+
|
288 |
# Step 3: Save denoised audio directly
|
289 |
sample_path = f"speaker_{speaker}_sample.wav"
|
290 |
sf.write(sample_path, denoised_audio_array, fps)
|
291 |
+
|
292 |
speaker_sample_paths[speaker] = sample_path
|
293 |
+
logger.info(f"✅ Created and saved sample for {speaker}: {sample_path}")
|
294 |
+
|
295 |
+
# Cleanup
|
296 |
+
logger.info("🧹 Closing audio clip and removing temporary files...")
|
297 |
video.close()
|
298 |
audio_clip.close()
|
299 |
os.remove(speech_audio_path)
|
300 |
+
logger.info("✅ Finished processing all speaker samples.")
|
301 |
|
302 |
return transcript_with_speakers, detected_language
|
303 |
|