Spaces:
Runtime error
Runtime error
File size: 9,174 Bytes
9f3730d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
from langchain_groq import ChatGroq
from langchain.prompts import PromptTemplate
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_core.messages import HumanMessage
from langchain.tools import tool
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import Runnable
from dotenv import load_dotenv
# Load environment variables from .env
load_dotenv()
# Initialize LLM
def initialize_llm():
"""Initializes the ChatGroq LLM."""
llm = ChatGroq(
temperature=0,
model_name="qwen-qwq-32b",
groq_api_key=os.getenv("GROQ_API_KEY")
)
return llm
# Initialize Tavily Search Tool
def initialize_search_tool():
"""Initializes the TavilySearchResults tool."""
return TavilySearchResults()
# Weather tool
def get_weather(location: str, search_tool: TavilySearchResults = None) -> str:
"""
Fetches the current weather information for a given location using Tavily search.
Args:
location (str): The name of the location to search for.
search_tool (TavilySearchResults, optional): Defaults to None.
Returns:
str: The weather information for the specified location.
"""
if search_tool is None:
search_tool = initialize_search_tool()
query = f"current weather in {location}"
return search_tool.run(query)
# Recommendation chain
def initialize_recommendation_chain(llm: ChatGroq) -> Runnable:
"""
Initializes the recommendation chain.
Args:
llm(ChatGroq):The LLM to use
Returns:
Runnable: A runnable sequence to generate recommendations.
"""
recommendation_prompt = ChatPromptTemplate.from_template("""
You are a helpful assistant that gives weather-based advice.
Given the current weather condition: "{weather_condition}", provide:
1. Clothing or activity recommendations suited for this weather.
2. At least one health tip to stay safe or comfortable in this condition.
Be concise and clear.
""")
return recommendation_prompt | llm
def get_recommendation(weather_condition: str, recommendation_chain: Runnable = None) -> str:
"""
Gives activity/clothing recommendations and health tips based on the weather condition.
Args:
weather_condition (str): The current weather condition.
recommendation_chain (Runnable, optional): The recommendation chain to use. Defaults to None.
Returns:
str: Recommendations and health tips for the given weather condition.
"""
if recommendation_chain is None:
llm = initialize_llm()
recommendation_chain = initialize_recommendation_chain(llm)
return recommendation_chain.invoke({"weather_condition": weather_condition})
# Math tools
@tool
def add(x: int, y: int) -> int:
"""
Adds two integers.
Args:
x (int): The first integer.
y (int): The second integer.
Returns:
int: The sum of x and y.
"""
return x + y
@tool
def subtract(x: int, y: int) -> int:
"""
Subtracts two integers.
Args:
x (int): The first integer.
y (int): The second integer.
Returns:
int: The difference between x and y.
"""
return x - y
@tool
def multiply(x: int, y: int) -> int:
"""
Multiplies two integers.
Args:
x (int): The first integer.
y (int): The second integer.
Returns:
int: The product of x and y.
"""
return x * y
@tool
def divide(x: int, y: int) -> float:
"""
Divides two numbers.
Args:
x (int): The numerator.
y (int): The denominator.
Returns:
float: The result of the division.
Raises:
ValueError: If y is zero.
"""
if y == 0:
raise ValueError("Cannot divide by zero.")
return x / y
@tool
def square(x: int) -> int:
"""
Calculates the square of a number.
Args:
x (int): The number to square.
Returns:
int: The square of x.
"""
return x * x
@tool
def cube(x: int) -> int:
"""
Calculates the cube of a number.
Args:
x (int): The number to cube.
Returns:
int: The cube of x.
"""
return x * x * x
@tool
def power(x: int, y: int) -> int:
"""
Raises a number to the power of another number.
Args:
x (int): The base number.
y (int): The exponent.
Returns:
int: x raised to the power of y.
"""
return x ** y
@tool
def factorial(n: int) -> int:
"""
Calculates the factorial of a non-negative integer.
Args:
n (int): The non-negative integer.
Returns:
int: The factorial of n.
Raises:
ValueError: If n is negative.
"""
if n < 0:
raise ValueError("Factorial is not defined for negative numbers.")
if n == 0 or n == 1:
return 1
result = 1
for i in range(2, n + 1):
result *= i
return result
@tool
def mean(numbers: list) -> float:
"""
Calculates the mean of a list of numbers.
Args:
numbers (list): A list of numbers.
Returns:
float: The mean of the numbers.
Raises:
ValueError: If the list is empty.
"""
if not numbers:
raise ValueError("The list is empty.")
return sum(numbers) / len(numbers)
@tool
def standard_deviation(numbers: list) -> float:
"""
Calculates the standard deviation of a list of numbers.
Args:
numbers (list): A list of numbers.
Returns:
float: The standard deviation of the numbers.
Raises:
ValueError: If the list is empty.
"""
if not numbers:
raise ValueError("The list is empty.")
mean_value = mean(numbers)
variance = sum((x - mean_value) ** 2 for x in numbers) / len(numbers)
return variance ** 0.5
# Build the LangGraph
def build_graph():
"""
Builds the LangGraph with the defined tools and assistant node.
Returns:
RunnableGraph: The compiled LangGraph.
"""
llm = initialize_llm()
search_tool = initialize_search_tool()
recommendation_chain = initialize_recommendation_chain(llm)
@tool
def weather_tool(location: str) -> str:
"""
Fetches the weather for a location.
Args:
location (str): The location to fetch weather for.
Returns:
str: The weather information.
"""
return get_weather(location, search_tool)
@tool
def web_search(query: str) -> str:
"""Search the web for a given query and return the summary.
Args:
query (str): The search query.
"""
search_tool = TavilySearchResults()
result = search_tool.run(query)
return result[0]['content']
@tool
def wiki_search(query : str) -> str:
"""Search Wikipedia for a given query and return the summary.
Args:
query (str): The search query.
"""
search_docs = WikipediaLoader(query=query, load_max_docs=1).load()
formatted_search_docs = "\n\n----\n\n".join(
[
f'<Document Source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return formatted_search_docs
@tool
def recommendation_tool(weather_condition: str) -> str:
"""
Provides recommendations based on weather conditions.
Args:
weather_condition (str): The weather condition.
Returns:
str: The recommendations.
"""
return get_recommendation(weather_condition, recommendation_chain)
tools = [weather_tool, recommendation_tool, wiki_search, web_search,
add, subtract, multiply, divide, square, cube, power, factorial, mean, standard_deviation]
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
"""
Assistant node in the LangGraph.
Args:
state (MessagesState): The current state of the conversation.
Returns:
dict: The next state of the conversation.
"""
print("Entering assistant node...")
response = llm_with_tools.invoke(state["messages"])
print(f"Assistant says: {response.content}")
return {"messages": [response]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.set_entry_point("assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
graph = build_graph()
question = "How many albums were pulished by Mercedes Sosa?"
messages = [HumanMessage(content=question)]
result = graph.invoke({"messages": messages})
for msg in result["messages"]:
msg.pretty_print()
|