File size: 2,196 Bytes
3f642da
 
db273bf
 
 
 
 
 
 
 
 
 
 
 
 
3f642da
db273bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f642da
db273bf
 
 
 
3f642da
db273bf
 
 
 
 
 
f3136cc
db273bf
 
 
 
f3136cc
 
db273bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline, AutoencoderKL

# Prompt negativo general
NEGATIVE_PROMPT = (
    "blurry, low quality, lowres, bad anatomy, bad proportions, deformed, distorted, disfigured, mutated, "
    "missing limbs, extra limbs, bad hands, fused fingers, missing fingers, bad feet, flat feet, fused toes, "
    "bad legs, short legs, long arms, malformed body, asymmetric body, unnatural pose, broken limbs, bad perspective, "
    "unnatural expression, strange eyes, cross-eyed, lazy eye, extra eyes, fused eyes, one eye, bad eyes, bad face, "
    "multiple faces, deformed face, mutated face, distorted face, ugly face, pale skin, unrealistic skin, overexposed, "
    "underexposed, high contrast, jpeg artifacts, watermark, text, logo, signature, cropped, cartoon, anime, sketch, painting"
)

# Seleccionar dispositivo
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# Cargar pipeline base
pipe = StableDiffusionPipeline.from_pretrained(
    "SG161222/Realistic_Vision_V6.0_B1_noVAE",
    torch_dtype=dtype,
    safety_checker=None
).to(device)

# Cargar VAE
pipe.vae = AutoencoderKL.from_pretrained(
    "stabilityai/sd-vae-ft-mse",
    torch_dtype=dtype
).to(device)

# Cargar LoRA
try:
    pipe.load_lora_weights("DRDELATV/Woman_Asiatic_Defi")
    pipe.set_adapters(["default_0"], adapter_weights=[1.0])
except Exception as e:
    print("Error cargando LoRA:", e)

# Función para generar imagen
def generar(prompt, steps, scale):
    image = pipe(
        prompt,
        negative_prompt=NEGATIVE_PROMPT,
        num_inference_steps=steps,
        guidance_scale=scale
    ).images[0]
    return image

# Interfaz
gr.Interface(
    fn=generar,
    inputs=[
        gr.Textbox(label="Escribe el promt de tu modelo"),
        gr.Slider(20, 100, value=50, step=5, label="Inference Steps"),
        gr.Slider(1.0, 15.0, value=5.5, step=0.5, label="Guidance Scale")
    ],
    outputs=gr.Image(label="Imagen generada"),
    title="Generador Woman x Global",
    description="-------------------------------------------------------------------------",
).launch()