File size: 54,785 Bytes
e6583bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import Annotated, List, Literal, Optional\n",
    "from pydantic import BaseModel, Field\n",
    "from operator import add\n",
    "from langgraph.graph.message import add_messages\n",
    "from langgraph.graph import StateGraph, END\n",
    "from langgraph.graph.state import CompiledStateGraph\n",
    "from IPython.display import Image, display\n",
    "# HuggingFace\n",
    "from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings\n",
    "from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint\n",
    "# Prompts\n",
    "from langchain.prompts import PromptTemplate\n",
    "from langchain_core.messages import BaseMessage\n",
    "from langchain_core.tools import tool\n",
    "# Others\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "# # LangSmith\n",
    "# import uuid\n",
    "# from langchain_core.tracers.context import collect_runs\n",
    "# from langchain_core.tracers.langchain import wait_for_all_tracers\n",
    "# from langsmith import Client\n",
    "# from langchain.callbacks.tracers import LangChainTracer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "ab89c1bc",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Understanding Pydantic and Typing\n",
    "# https://typing.python.org/en/latest/spec/annotations.html\n",
    "# https://docs.pydantic.dev/latest/\n",
    "# https://medium.com/@moraneus/exploring-the-power-of-pythons-typing-library-ff32cec44981\n",
    "# https://coderivers.org/blog/typingannotated-python/\n",
    "# https://chatgpt.com/share/68644926-ccfc-800a-b668-4752077e3a29"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "d137f5ad",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Provide the filename as a string\n",
    "load_dotenv('../.env')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "68a6a30e",
   "metadata": {},
   "source": [
    "## **Define State**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "bfe2ebdb",
   "metadata": {},
   "outputs": [],
   "source": [
    "class ResearchArticle(BaseModel):\n",
    "    text: str\n",
    "    title:str\n",
    "    category: str\n",
    "\n",
    "class ResearchArticleState(BaseModel):\n",
    "    \"\"\"\n",
    "    Represents the evolving state of the article bot.\n",
    "    \"\"\"\n",
    "    article: Annotated[List[ResearchArticle], add] = []\n",
    "    articles_choice: Literal[\"n\", \"c\", \"q\"] = \"n\"\n",
    "    category: str = \"nlp\"\n",
    "    title:str = \"Solving the myth and facts of child development with nlp\"\n",
    "    quit: bool = False"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "ae02f563",
   "metadata": {},
   "outputs": [],
   "source": [
    "class AgenticResearchArticleState(ResearchArticleState):\n",
    "    latest_article: str = \"\"\n",
    "    approved: bool = False\n",
    "    retry_count:int = 0"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8dffeb22",
   "metadata": {},
   "source": [
    "## **Utilities**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "1cc7442a",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_user_input(prompt:str)-> str:\n",
    "    prompt_input = input(prompt)\n",
    "    prompt_input = \"\".join(prompt_input).strip().lower()\n",
    "    return prompt_input\n",
    "\n",
    "def print_article(article:ResearchArticle):\n",
    "    \"\"\"\n",
    "    Print article with nice formatting\n",
    "    \"\"\"\n",
    "    print(f\"\\nCATEGORY: {article.category.upper()}\\n\")\n",
    "    print(f\"\\n{article.title}\\n\")\n",
    "    print(f\"\\n{article.text}\\n\")\n",
    "    print(\"=\"* 60)\n",
    "\n",
    "def print_menu_header(category:str, total_articles:int):\n",
    "    \"\"\"\n",
    "    Print a compact menu header\n",
    "    \"\"\"\n",
    "    print(f\"🎭 Menu | Category: {category.upper()} | Articles: {total_articles}\")\n",
    "    print(\"-\" * 50)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "699940c6",
   "metadata": {},
   "source": [
    "## **LLMS**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "3edd2c97",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "WARNING! max_length is not default parameter.\n",
      "                    max_length was transferred to model_kwargs.\n",
      "                    Please make sure that max_length is what you intended.\n"
     ]
    }
   ],
   "source": [
    "# Provide the filename as a string\n",
    "load_dotenv('.env')\n",
    "\n",
    "\n",
    "# loadding Huggingface token\n",
    "HUGGINGFACEHUB_API_TOKEN = os.getenv(\"HUGGINGFACEHUB_API_TOKEN\")\n",
    "\n",
    "# models \n",
    "repo_id_writer = \"mistralai/Mistral-7B-Instruct-v0.3\"\n",
    "repo_id_critic = \"mistralai/Mistral-7B-Instruct-v0.3\"\n",
    "# repo_id_critic = \"mistralai/Mistral-Small-24B-Instruct-2501\"\n",
    "\n",
    "\n",
    "# model parameters\n",
    "model_kwargs_writer = {\n",
    "    \"max_new_tokens\": 200, # Maximum tokens to generate\n",
    "    \"max_length\": 100, # Maximum length of input + output\n",
    "    \"temperature\": 0.8, # Controls randomness of output\n",
    "    \"timeout\": 6000,\n",
    "    # \"task\":'conversational'\n",
    "}\n",
    "\n",
    "# LLM set up\n",
    "llm_writer = HuggingFaceEndpoint(\n",
    "    repo_id=repo_id_writer,\n",
    "    huggingfacehub_api_token = HUGGINGFACEHUB_API_TOKEN,\n",
    "    **model_kwargs_writer\n",
    "    # you specify the task or not\n",
    "    # You can also specify the task in the model_kwargs or within here\n",
    "    # task = 'conversational',\n",
    ")\n",
    "# model parameters\n",
    "model_kwargs_critic = {\n",
    "    \"max_new_tokens\": 5, # Maximum tokens to generate\n",
    "    # \"max_length\": 4000, # Maximum length of input + output\n",
    "    \"temperature\": 0.1, # Controls randomness of output\n",
    "    \"timeout\": 6000,\n",
    "    # \"task\":'conversational'\n",
    "}\n",
    "\n",
    "# LLM set up\n",
    "llm_critic = HuggingFaceEndpoint(\n",
    "    repo_id=repo_id_critic,\n",
    "    huggingfacehub_api_token = HUGGINGFACEHUB_API_TOKEN,\n",
    "    **model_kwargs_critic\n",
    "    # you specify the task or not\n",
    "    # You can also specify the task in the model_kwargs or within here\n",
    "    # task = 'conversational',\n",
    ")\n",
    "\n",
    "chat_model_writer = ChatHuggingFace(llm=llm_writer)\n",
    "chat_model_critic = ChatHuggingFace(llm=llm_critic)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "863283ed",
   "metadata": {},
   "source": [
    "## **Prompts**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "cc2ebd9d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Writer prompt\n",
    "WRITER_PROMPT = \"\"\"\n",
    "You are the best captivating research abstract generator \n",
    "with 20 years of experience \n",
    "who can write the most interesting research abstracts.\\n\n",
    "When given a category and title, be as detailed and concise as possible.\\n\\n\\n\n",
    "Here are examples\n",
    "======================================================\n",
    "category: nlp\n",
    "Title:The Next Frontier in Natural Language Processing\n",
    "\n",
    "Abstract\n",
    "Natural Language Processing (NLP) has evolved from rule-based text manipulation to enabling human-like interactions across billions of devices. While transformers like BERT and GPT revolutionized text understanding, the next frontier lies in grounding language in real-world context, emotion, and dynamic memory. This article explores the state-of-the-art in NLP, its challenges, and the emerging paradigms shaping its future—from multimodal intelligence to reasoning-aware models.\n",
    "======================================================\n",
    "\\n\\n\\n\n",
    "Category: {category}\n",
    "Title: {title}\n",
    "Abstract: \n",
    "\"\"\"\n",
    "# Critic prompt\n",
    "CRITIC_PROMPT = \"\"\"\n",
    "Daniel the greatest critic and editor of research articles.\\n\n",
    "You evaluate all research article blog post to see if they are structured or not.\n",
    "You reponse only by saying YES or NO.\\n\\n\\n\n",
    "======================================================\n",
    "Here are examples\n",
    "category: nlp\n",
    "Title: Eyes of the Machine: The Expanding Horizon of Computer Vision\n",
    "Abstract:\n",
    "Computer Vision, once limited to edge detection and barcode scanning, now powers autonomous vehicles, medical diagnosis, and generative art. From convolutional neural networks (CNNs) to vision-language transformers and neuromorphic sensors, the field is undergoing a seismic transformation. This article explores the evolving landscape of CV, current breakthroughs, limitations, and the emerging frontier of visual intelligence.\n",
    "Response: YES\n",
    "======================================================\n",
    "\\n\\n\\n\n",
    "Abstract: {abstract}\n",
    "RESPONSE: \n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "8061d5db",
   "metadata": {},
   "outputs": [],
   "source": [
    "writer_input_variable = ['category','title']\n",
    "writer_prompt = PromptTemplate(template=WRITER_PROMPT,\n",
    "                              input_variables=writer_input_variable)\n",
    "\n",
    "\n",
    "critic_prompt_variable = ['abstract']\n",
    "critic_prompt = PromptTemplate(\n",
    "    template=CRITIC_PROMPT,input_variables=critic_prompt_variable\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fe73f7c2",
   "metadata": {},
   "source": [
    "## **Define Nodes**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4f2c54b0",
   "metadata": {},
   "outputs": [],
   "source": [
    "def make_writer_node(llm):\n",
    "    def writer_node(state: AgenticResearchArticleState) -> dict:\n",
    "        chain = writer_prompt | llm\n",
    "        response = chain.invoke({\"category\": state.category, \"title\": state.title})\n",
    "        content = response.content.strip().lower()\n",
    "        return {\"latest_article\": content}\n",
    "    return writer_node"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7d09a484",
   "metadata": {},
   "outputs": [],
   "source": [
    "# critic-node\n",
    "def make_critic_node(llm):\n",
    "    def critic_node(state:AgenticResearchArticleState)-> dict:\n",
    "        critic = critic_prompt | llm\n",
    "        decision = critic.invoke({\"abstract\": state.latest_article})\n",
    "        decision = decision.content.strip().lower()\n",
    "        approved = \"yes\" in decision\n",
    "        return {\n",
    "            \"approved\":approved,\n",
    "            \"retry_count\":state.retry_count + 1\n",
    "        }\n",
    "    return critic_node"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "70267684",
   "metadata": {},
   "outputs": [],
   "source": [
    "def show_final_article(state:AgenticResearchArticleState) -> dict:\n",
    "    article = ResearchArticle(\n",
    "        text=state.latest_article,\n",
    "        category=state.category,\n",
    "        title=state.title\n",
    "    )\n",
    "    print_article(article)\n",
    "    return {\n",
    "        \"article\":[article],\n",
    "        \"retry_count\": 0,\n",
    "        'approved': False\n",
    "    }"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "91ec73b8",
   "metadata": {},
   "outputs": [],
   "source": [
    "def writer_critic_router(state: AgenticResearchArticleState) -> str:\n",
    "    if state.approved or state.retry_count >= 20:\n",
    "        return \"show_final_article\"\n",
    "    return \"writer\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "83f15417",
   "metadata": {},
   "outputs": [],
   "source": [
    "def show_menu(state: ResearchArticleState) -> dict:\n",
    "    print_menu_header(state.category, len(state.article))\n",
    "    print(\"Pick an option\")\n",
    "    user_input = get_user_input(\n",
    "        \"[n] 🎭 Next Article \\n[c] 📂 Change Category\\n[q] 🚪 Quit\\nUser Input: \"\n",
    "    )\n",
    "\n",
    "    while user_input not in [\"n\", \"c\", \"q\"]:\n",
    "        print(\"❌ Invalid input. Please try again.\")\n",
    "        user_input = get_user_input(\n",
    "            \"[n] 🎭 Next Article  [c] 📂 Change Category  [q] 🚪 Quit\\n    User Input: \"\n",
    "        )\n",
    "\n",
    "    result = {\"articles_choice\": user_input}\n",
    "\n",
    "    # Always prompt for title when 'n' is chosen\n",
    "    if user_input == \"n\":\n",
    "        title = input(\"\\nEnter a title for the new article:\\n\\nTITLE: \")\n",
    "        result[\"title\"] = title.strip()\n",
    "\n",
    "    return result\n",
    "\n",
    "\n",
    "\n",
    "# # Original\n",
    "# def show_menu(state:ResearchArticleState) -> dict:\n",
    "#     print_menu_header(state.category,len(state.article))\n",
    "#     print(\"Pick an option\")\n",
    "#     user_input = get_user_input(\n",
    "#         \"[n] 🎭 Next Article \\n[c] 📂 Change Category\\n[q] 🚪 Quit\\nUser Input: \"\n",
    "#     )\n",
    "\n",
    "#     while user_input not in [\"n\", \"c\", \"q\"]:\n",
    "#         print(\"❌ Invalid input. Please try again.\")\n",
    "#         user_input = get_user_input(\n",
    "#             \"[n] 🎭 Next Article  [c] 📂 Change Category  [q] 🚪 Quit\\n    User Input: \"\n",
    "#         )\n",
    "#     return {\"articles_choice\": user_input}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "c9c4798c",
   "metadata": {},
   "outputs": [],
   "source": [
    "def update_category(state: AgenticResearchArticleState) -> dict:\n",
    "    categories = [\"nlp\", \n",
    "                  \"computer_vision\", \n",
    "                  \"gen_ai\"]\n",
    "    print(\"CATEGORY SELECTION\")\n",
    "    print(\"=\" * 60)\n",
    "\n",
    "    for i, cat in enumerate(categories):\n",
    "        print(f\"    {i}. {cat.upper()}\")\n",
    "\n",
    "    print(\"=\" * 60)\n",
    "\n",
    "    try:\n",
    "        selection = int(input(\"    Enter category number: \").strip())\n",
    "        # title = input(\"What is your title? \")\n",
    "        if 0 <= selection < len(categories):\n",
    "            selected_category = categories[selection]\n",
    "            print(f\"    ✅ Category changed to: {selected_category.upper()}\")\n",
    "            return {\n",
    "                \"category\": selected_category,\n",
    "                # \"title\":title\n",
    "                }\n",
    "        else:\n",
    "            print(\"    ❌ Invalid choice. Keeping current category.\")\n",
    "            return {}\n",
    "    except ValueError:\n",
    "        print(\"    ❌ Please enter a valid number. Keeping current category.\")\n",
    "        return {}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "d0b4ff1a",
   "metadata": {},
   "outputs": [],
   "source": [
    "def exit_bot(state:ResearchArticleState) -> dict:\n",
    "    print(\"\\n\" + \"🚪\" + \"=\" * 58 + \"🚪\")\n",
    "    print(\"    GOODBYE!\")\n",
    "    print(\"=\" * 60)\n",
    "    return {\"quit\": True}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "3c2d7b22",
   "metadata": {},
   "outputs": [],
   "source": [
    "def route_choice(state:ResearchArticleState)-> str:\n",
    "    \"\"\"\n",
    "    Router function to determine the next node based on user choice.\n",
    "    Keys must match the target node names.\n",
    "    \"\"\"\n",
    "    if state.articles_choice == \"n\":\n",
    "        return \"fetch_article\"\n",
    "    elif state.articles_choice == \"c\":\n",
    "        return \"update_category\"\n",
    "    elif state.articles_choice == \"q\":\n",
    "        return \"exit_bot\"\n",
    "    else:\n",
    "        return \"exit_bot\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0a1998d8",
   "metadata": {},
   "source": [
    "## **Building the Graph**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "74033c0f",
   "metadata": {},
   "outputs": [],
   "source": [
    "def build_joke_graph(writer_llm, critic_llm) -> CompiledStateGraph:\n",
    "    workflow = StateGraph(AgenticResearchArticleState)\n",
    "\n",
    "    # Register nodes\n",
    "    workflow.add_node(\"show_menu\",show_menu)\n",
    "    workflow.add_node(\"update_category\",update_category)\n",
    "    workflow.add_node(\"exit_bot\",exit_bot)\n",
    "    workflow.add_node(\"writer\", make_writer_node(writer_llm))\n",
    "    workflow.add_node(\"critic\", make_critic_node(critic_llm))\n",
    "    workflow.add_node(\"show_final_article\",show_final_article)\n",
    "\n",
    "    # Set entry point\n",
    "    workflow.set_entry_point(\"show_menu\")\n",
    "    \n",
    "    # Routing Logic-1\n",
    "    workflow.add_conditional_edges(\n",
    "        \"show_menu\",\n",
    "        route_choice,\n",
    "        {\n",
    "            \"fetch_article\": \"writer\",\n",
    "            \"update_category\": \"update_category\",\n",
    "            \"exit_bot\": \"exit_bot\",  \n",
    "        },\n",
    "    )\n",
    "\n",
    "    # Define transitions\n",
    "    workflow.add_edge(\"update_category\", \"show_menu\")\n",
    "    workflow.add_edge(\"writer\", \"critic\")\n",
    "    \n",
    "    \n",
    "    # Routing Logic-2\n",
    "    workflow.add_conditional_edges(\n",
    "        'critic',\n",
    "        writer_critic_router,\n",
    "        {\n",
    "            \"writer\": 'writer',\n",
    "            \"show_final_article\": \"show_final_article\",\n",
    "        }\n",
    "    )\n",
    "    workflow.add_edge(\"show_final_article\", \"show_menu\")\n",
    "    workflow.add_edge(\"exit_bot\", END)\n",
    "    \n",
    "    return workflow.compile()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "51a84f6c",
   "metadata": {},
   "source": [
    "## **Graph Visualisation**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "6446bea3",
   "metadata": {},
   "outputs": [],
   "source": [
    "def graph_visualiser(graph):\n",
    "    try:\n",
    "        display(Image(graph.get_graph().draw_mermaid_png()))\n",
    "    except Exception as e:\n",
    "        print(e)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "d4f1917b",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAccAAAHXCAIAAABGSAZ+AAAAAXNSR0IArs4c6QAAIABJREFUeJzs3XdcE/f/B/BPdgh7L0GW7KmAA3BvcSvuWeuuuK2r1rq1DrS2olXrVmq1qDjrYjhwgSxRZKhsCASyCBm/P66/lK8CKlxyGe/nwz9Cxn3eHsmLy/vuPkeSyWQIAAAATshEFwAAABoFUhUAAPAEqQoAAHiCVAUAADxBqgIAAJ4gVQEAAE9UogsA2qi0QMirkfBqxJJ6WZ1ASnQ5n0fXIVOoJF0Diq4BzbItg0QiuiCgwkhwvCpQmldPavMyuHkZPAdPXSRDLAOqsQVdJJQQXdfnMXQoVeUifo24XoTeZfPaurMcvXS9OhmS4Mse+ASkKlCGtCTOg8sVzr56jt66jl66ZIp6b+zlZ/LzMrj5mTzfEKMOvY2JLgeoFkhVoFgVhXXXj5fYubK6hJvRGOodpp96GFeZlsTpP9nK3p1FdC1AVUCqAgV69bQ25V5V+AwbPSON7eCLhNJ/zpRatWW27wkbrQBBqgIFys/kv3lR22eCJdGFKMODy5V6RlTfMEOiCwHEg1QFCvHibnXZe2G/yVZEF6I8ibEVErGs20hzogsBBINdmAB/77P577J5WhWpCKHQoWZSiSzjUQ3RhQCCQaoCnPFrpKkJnKGzbYkuhAA9IiyK84Rl7+uILgQQCVIV4Cwhtsy1vR7RVRDGu7NB/IVyoqsARIJUBXiqKBKxS0Su7fWJLoQwVg5MHT1KXjqP6EIAYSBVAZ7SH3DChmn77pqQIWbZz2qJrgIQBlIV4EZSL8tKrmnTTkeZg547d27dunUteOGKFStiY2MVUBEyMqdVFNVVldUrYuFA9UGqAtzkZvAcvXWVPGhGRoaSX/glHL108zOgCaCl4HhVgJv4ixVtXHScfBQSrLm5udHR0U+fPqVQKL6+vpMmTfLz8/vmm29SU1OxJ5w8edLd3f3cuXMJCQnp6ekMBiMwMHDevHk2NjYIoaVLl9LpdCsrq+PHj2/ZsmXlypXYq/T09O7du4d7taUFdanx1X0nacUZEOAjsK0KcFOSL9AzVMiZqSKRaPbs2RKJJDo6et++fWQyefHixXV1dYcPH/b29h40aNDTp0/d3d2fPXu2Y8eOgICAkydP7tmzp7S0dO3atdgSaDRaZmZmTk7Orl27AgMDk5KSEEJr165VRKQihPRNqB9y+IpYMlB9Gnt2NlA+fq2EZUBRxJILCgrYbPbUqVNdXFwQQlu2bHnx4oVYLGYwGA2f5u/vf+7cOQcHBwqFghCaOHHi0qVLuVyunp4ehUIpLy8/d+4c9pK6OsUeUsrSp/Br1WCGQ6AIkKoAN/waMUtfIe8oe3t7Y2PjH3/8ceTIkX5+fp6enoGBgZ8+jUKhvH//fufOnWlpaQKBALuTzWbr6ekhhBwdHT9KYYVi6VN4NRJdxfyZAaoMOgAAJzJEY5DJinlDMRiMQ4cOhYaGHj58ePLkycOHD79+/fqnT7tz587SpUt9fX0PHz785MmTPXv2fLQQhRTXBIYORaYGVzkA+INUBTghISqNxKtR1NdeBweHhQsXXrly5eeff3ZyclqzZs3r168/es7FixcDAgJmz57t6upKIpG4XK6CivkS1eUi2FDVTpCqADcsfSq/VqyIJefl5V2+fBkhxGQyu3fvvm3bNjKZnJmZ+dHTOByOufl/5yDcvXtXEcV8CQFXwmBR4Por2gl+7QA31o5MAVch26pVVVXr16/fs2fPhw8fcnNzjx49KpVKfX19EUJ2dnaZmZlPnz5ls9murq7JycnPnz8Xi8UnT56kUqkIoZKSkk8XyGAwLCwskpOTnz59Khbj/5eAXyOxd4OrA2gpSFWAG/M2jNcvFHKmZvv27VetWnXt2rVhw4ZFRESkpqZGR0c7OTkhhEaMGCGTyebOnfvmzZv58+cHBwcvXLiwc+fOFRUV69at8/T0nDt37j///PPpMqdPn/748eMlS5bI92vhKOcl18iChvtigVqAswAAboR86YnN+d9udCK6EOKd/fld73GWZrZK3T8GVARsqwLcMFlkRy+90nfaPrsor0aiZ0SDSNVacLwqwJNHkP6DyxXD5zU5ZfXChQtTUlIafUgmk5FIjV+EdcOGDWFhYfiV+Z+XL18uWLCg0YfEYjHWmW3U7du3sXMNPvUwrsLZV9nzIQDVAR0AgLNL0UX+3YyaupJzRUWFSCRq9KG6urqmDik1MTFhMpm4lvmfoqKiFrwKm17gU1Vl9XGHiyaubNvquoC6glQFOKsoFD2/W9V3opZOLJLwd4WdK8vBEw4A0F7QVwU4M7Olt2mnc/tsGdGFEODJTTadQYZI1XKQqgB/nh0N6Ezyg8uVRBeiVGmJnPIPdR0HmBBdCCAYdACAoqQlcrjVks7hWpEyLxM5nIr6sGFmRBcCiAfbqkBRfEINqXR09Ugx0YUoXMLFCnaJCCIVYGBbFShWbhrv1umSoL4m7XsYE10L/jIe1iRdrggZbObV2YDoWoCqgFQFiidDSVcqsh7X+IQaOXrpWtip/eHx7BJRXgYv9yXPzJbeZbAZQwe+84H/QKoCJRHypC+TqvPSeTyO2NlPj0wm6RpQDMxokno1eAdSaeQadj2vRlwvlL5/zafSyY5eup4dDQ3N4Dwa8DFIVaBsvBpJSZ6gtlrMr5EgJMN9StakpKSOHTs2c1pUC+jqU6QI6RpQ9QyplvYMA1OYOQU0CVIVaJoePXpcunRJX1+f6EKAloJ+EAAA4AlSFQAA8ASpCgAAeIJUBQAAPEGqAgAAniBVAQAAT5CqAACAJ0hVAADAE6QqAADgCVIVAADwBKkKAAB4glQFAAA8QaoCAACeIFUBAABPkKoAAIAnSFUAAMATpCoAAOAJUhUAAPAEqQoAAHiCVAUAADxBqgIAAJ4gVQEAAE+QqgAAgCdIVaBpzMzMZDIZ0VUA7QWpCjRNRUUFiUQiugqgvSBVAQAAT5CqAACAJ0hVAADAE6QqAADgCVIVAADwBKkKAAB4glQFAAA8QaoCAACeIFUBAABPkKoAAIAnSFUAAMATpCoAAOAJUhUAAPAEqQoAAHiCVAUAADyRYH5foBk6dOggk8nkM6vKZDKZTObv73/06FGiSwPaBbZVgYawtLQkk8mk/0cmk62srGbOnEl0XUDrQKoCDREUFPTRFy8XF5fOnTsTVxHQUpCqQENMmDDByspK/qO5ufmECRMIrQhoKUhVoCFcXV0DAwPlP7q5uXXq1InQioCWglQFmmP8+PHY5qqBgcHYsWOJLgdoKUhVoDnc3NwCAgIQQu7u7rChCohCJboAoE5kMlT+vq66ol4skhJdS+N6Bk4ueU3t32Vw5qMaomtpHJVG0jehmdnQaQzYptFMcLwq+FI5qdzUeE59ndTGmSXgSoguR10x9Sil+QIandwuQNe7iyHR5QD8wbYq+CIFWYLUeE7fybZEF6I57p8vIZFJXp0MiC4E4Ay+g4DPK3tX9zCuAiIVX91GWeWk8HJf8oguBOAMUhV83vO71UH9zImuQgMFDzBPSagmugqAM0hV8Hkf3vAMzWhEV6GB9Iyope+EYhHs29AokKrgM8RiGYVGZrAoRBeimUytmbVVYqKrAHiCVAWfQUJICHv8FUYkECME26oaBVIVAADwBKkKAAB4glQFAAA8QaoCAACeIFUBAABPkKoAAIAnSFUAAMATpCoAAOAJUhUAAPAEqQoAAHiCVAUAADxBqgLluRJ3sUevQLEYJhMBmgxSFQAA8ASpCgAAeILrVgH8yWSy83+dvnkz7kPhu7b2jh06dJw+bQ6F8u8MreUVZRs2rsrKSrezazsmYtKggcOwl/wd++e1a7H5BblGRsYuLm6zvl3Qtq3jpi1rq6vYO7bvx147ZdooHo97PuY69uOP61fUi+s3bdjVVCU5Oa+/nTV+y+aoM2f/ePnyhbWVzbhxU12cXbdsW1dU9MHd3WvBd8td27kjhMRi8aHff3n0OLG8vNTHJ2D40IhOnUKxhQwZ2mP8+Gk8HvfkqSO6urrBQV3mz1tqYmKakfFy/oLpv+4/5uHuhT1z7PjwHt37zpq5QLHrF6g22FYF+Ltw4eyRo7+NGjn+1InY8PARcVf//vP8KewhGo22d9/2KZNn7tp5wM3Nc0/U1rKyUoTQjZtX9u7b3q/f4D/PXfthzZbi4sL1G75HCHVoH5yWniKRSBBCbHZlUdGHOqGwsOgDtrTUl887tO/YTCV0Oh0htP/XnZMnfXvnnydeXr4HD+7du2/7qpUbrl9NolKp+37ZgT1z954tFy6eHTli3JnTV7qG9Vy3fnl8wp1/F8JgnD59lMFgXoq9+8eR8y/TXhw/cUjBqxCoMUhVgL/Ul8/9/Dr06xduYmIaPmj4L/uOBgV2xh6qr68fNjSiY3CXAP/AqVNmicXizKw0hFBs7J89uvcZOWKsoaGRt7ffvLlL8vLeZmWltw8Irqure/3mFbZYd3cvV1eP9LQUhFB+fm51dVVgh+ZSlUwmI4SGDRndoX0wiUTq1rU3l8cdP36au5snlUrtGtozJycbISQUCm/eihs/buqQwSMNDQwHDRzWs0e/kycPYwshkUhubp4TJ0zX19M3MzPv0KFjVla6UlYkUEuQqgB/3t5+T58+2r7jp8Ske7Xc2ja2ds7O7eSP+vm2x27o6xsghOqEQoRQXv5bT08f+XPc3bwQQjlvX1tYWNrZtU1PT0EIpaWneLh7e3v7pWekYiFrYWFpb+/w2XocHJ2xG7p6egihtvaO2I9MHR2hUCgWi1+9yhCLxfLoRwgF+Ae+ycnm8f69AKqrq4f8IT09fR6P2+qVBDQW9FUB/kaOGKejw3rwMH7tD0upVGrPnv1mzvjO1NQMe5RK/fhdx+Vy6+rqGAym/B4Wi4UQEgj4WMC9fPli9KgJqanPpk2dzWAwf9n/M0IoJeVpgH/Ql9SDbbE29SNCiMurRQh9F/nNR/ez2RW6urrY5urXrACg1SBVAf4oFMrg8BGDw0fk5+c+e/b4j2PRfB5vw08/N/V8JpOJEBIKBfJ7eHweQsjExAwh1L598M5dmzic6tzcnPYBwRQK5f37Ag6n+tnz5AXfLcelYGygJYtX29raNbzfzMziq5aD9X+BloNUBTiTyWQ3b8a5uXk6ODhh/2pqOTduXmnmJVQq1c3VIyPj5ehRE7B7MjJeIoScHF0QQgEBQVxu7Y2bV5yd22HbsO1c3K5ei62trWm+qfrl7Oza0ul0CoUS4B+I3cNmV5JIJB0dnWZeRaPTG/4xqKmtYbMrcakHqDXoqwKckUikGzevrFu//OHDhJramkePEhOT7nl5+jb/qiFDRt2Pv33hwtlabu2LlKe//rYrKLCTk5MLQshA38C1nfulS+e9vfywJ3v7+F+5csG1nbuRkTEuNevr6U+dMuuPY9FpaSkikeje/X+WrZgXtXdb869yaOukr6eP/cEQi8Xbd6zHOsVAy8G2KsDfiuU//rL/51VrFiGETE3NwgcNHz1qYvMvGdB/CJtdeTbm+L79P1tZWgcGdvr22+/kj/r7B56LOTHNJwD70cvT98KFsxGjP7PMrzJu7BQXF7fTZ/94/jxZV1fP28tv2dIfmn8JnU5fu3ZL1N5tPXoFmpmZz5oZyWZXQhMAkGQyuBY5aI5ELDu4MnfiGmeiC9FMsb8WDJpubWxJJ7oQgBvoAAAAAJ6gAwDU27mYE/LD9T/i6OSyd8/vSq8IaDtIVaDeBg4c1rVrr0YfolFpSi8HAEhVoOb09fT19fSJrgKA/0BfFQAA8ASpCgAAeIJUBQAAPEGqAgAAniBVAQAAT3AMAACqorq6uqCg4N27d+Xl5a9evdq+fTvRFYGWgFQFgGCnTp16U5BSWVnJ5/Pr6up4PF5tba1UKiW6LtBCkKoAEOz69evFlTkymUw+nTaJRDIxMSG6LtBC0FcFgGCzZ8+2tbX96AoF2DUIgDqCVAWfQaGQjCxoMLWZgujoU7v36Lp8+XIbGxv5nTKZrLa2dsaMGcePH8/NzSW0QPDVoAMAPuPuvbvCOht2cZ2pDYPoWjSNkCepKhXpGVNCQ0NZLNa6deuKi4uxmVvv3r2bkpKSkJDw/fffi0SisLCwsLCw4OBgoksGnwfzq4LG5efnOzg4XLp0KSEhITxsPhUZ+HbDZ+J9IPfmeY2QV98l3BT7MSsra8WKFUVFRTY2NpcuXZI/rbCwMD4+PjExMSUlJSwsrGvXrqGhoQYGcN0BFQWpCj7GZrOnT5/eo0ePyMhIiURCoVAQQrdOleqbMr06GxJdneZ494qX/bR6xDzbhncWFRXNnDnzypXGL/NVV1eX8P+cnJzCwsJCQ0OdnWFCcdUCqQr+FRcXd/Xq1f3791dVVfH5fFtb24+ecPVosZ4xncmimFozpVJ427QQmUKqKq2rE0hK8vgj5rUhtXTXRmpqKrYBKxQKsf5Ax474XBsRtBKkqra7f/++i4uLra3tnj17evfu7e3t3cyT36ZyC3MFCfGPGMiQRCLJEEL///6RIaQiG02FhYXW1tYf7VJXBdXV1Vwut51HGx1dulVbpnsQPhMYFhYWYluvL168CPt/hobwrYIwkKpaqrKy0tTU9IcffuDxeOvWrfuqJp2/vz+V+j/7OaVSqYuLS0xMjAIq/Wo9evS4dOmSvr4qTrr65MkTQ0NDV1fXBw8edOnSBd+Fi0QieX/AwcEhNDS0a9euKvKnTqtAqmqd9PT0tWvXzp07t0+fPnV1dQzGV+/ZDw8PLykpaXiPiYnJ9u3b/f39ca20hVJSUry9vT/KfVWzevVqgUCwa9cuBS0/NTU1MTExISGBz+djW6+dOnVS0FjgI5CqWkEmk8XGxhYVFc2dOzctLc3IyMjOzq41CwwKCpK/c5hM5vjx4+fOnYtTsdoCO8oiMTGRw+EMGjRIQaMUFRUlJibGx8c/e/YMi9euXbtCf0ChVK73BPD14MEDhFBOTk56evqAAQMQQj4+Pq2J1BMnTgQFBS1YsAA7UV0mk7m7u6tUpC5atIjP5xNdxec5ODgghNq3b5+cnHzhwgUFjWJjYxMREfHLL7/Ex8f379//+fPnI0eOnDZt2pEjR3JychQ0qJaDbVXNhH21Dw8P9/f337hxIy7LjIuLi4qKGjRoUGRkJEIoJCSkrq7O2tp6//799vb2uAyBC1XuqzaFx+Pp6uouW7asQ4cOY8eOVfRwaWlpCQkJ8fHxPB4P24Dt3LmzogfVHpCqmubWrVvR0dFRUVG2trbYZ7X1y3zw4MHevXvd3NwiIyMbzvoREhLy3XffKSEFvopa9FUbVVtbGx0dPW/ePLFYrJy/CsXFxdjerSdPnsj7A0ZGRkoYWoNBqmoCiURy6dIlQ0PDnj17Xr161cvLq23btrgs+dWrV1FRUTQaLTIyEvYmKw2Hw+nbt++WLVt69uypnBHFYjEWr/Hx8W3atOnatWtYWFi7du2UM7qGgVRVb69evXJ3dz99+nReXt6sWbPMzMzwWnJpaenevXsLCgoiIyODgoLwWqwSLFq0aNOmTSwWi+hCWkUikdy7d69Xr16JiYkBAQHKnMIqPT0di9fa2lpsAxb3g8A0G6SquiouLp4wYcLkyZOnTp2K75Lr6+ujoqLu3r0bGRnZt29ffBeuBOrYV23Gs2fPFi9efPLkyVYettECpaWl8fHxCQkJjx8/ls8/ABO/fhakqpo5duxYQkLC77//XllZSaPRcJ9i48iRI4cOHYqMjFS1bumXU9++ajPKysosLCx27NgxZcoUCwsLJY8ukUjk5xfY2Nhg8w+4ubkpuQx1AamqBqRS6ZUrV4KDg62srA4ePDho0KBPT9Jvvb///jsqKmr06NEqdZgUaOjKlSuXL1+Ojo7Gaz9kC2RkZGDzD1RXV2P9gZCQEEIqUVmQqiqtpKTEyspq4cKFpqamy5cvb8F5UF8iPj4+KioqICAgMjJSA744R0ZGbtmyRd37qs1LSkq6dOnSihUrCPw+Xlpaim29Pnz4UN4fMDU1Jaoe1QGpqqIePXq0cuXKTZs2KXRHQVpaWlRUlKGh4YIFC/A6bIBwGtZXbcqdO3eEQuHAgQNzc3OdnJwIrEQqlWJ7txITE62srLANWG3uD0CqqpD6+vpTp07V1tZ+9913mZmZdnZ2iouGwsLCqKio8vLyyMhIFTl/Hy9paWmenp7YtLDaYPv27bm5ufv371eF/3JGRkZCQkJiYiKbzcbiNTQ0lOiilA1SlXgSieT27dt9+/bNyMi4e/fumDFjzM3NFTecQCDYs2fP48ePFyxYoLTDIYFCPX361MfHp6qq6u3btyrS5SwrK8P6A0lJSVhzoGvXrlrSH4BUJZJQKGQymaGhoREREQsWLFDCiAcPHjxx4sTChQtHjhyphOEIoQ191UbV1dUtX768Xbt28+fPJ7qW/8hkMvnxAxYWFli8uru7E12XAkGqEiMmJubgwYNnz57F8bj95v35559RUVGTJ0+eOXOmckYkipb0VZtSXFxsbW197Ngxc3PzgQMHEl3O/8jMzMQm0KqsrJRPsE10UfiDVFUeHo8XExPj6OjYvXv327dvBwYGKmdCttu3b0dFRYWEhERGRjKZTCWMSCxt66s2qrq6evfu3aNGjfLx8SG6lkaUl5djW6+JiYmhoaHYIQRK28JQNEhVhZNKpS9fvvT39z916lR1dfWUKVP09PSUM/Tz58/37t1raWkZGRnZ8HLzQEuIRCI6nT5kyJDZs2er2narnHz+ATMzM2z+AQ8PD6KLahVIVcXKy8sbM2bM6tWrhw4dqsxx8/Pzo6KieDxeZGSkl5eXMocmnNb2VZvC4XD++uuv6dOnE34MVvNevXqFnSBbXl4un0CL6KJaAlJVIXbu3JmSknLixAk2m63k47RramqioqJSU1MjIyM1smn1WVreV21Gdnb2lClToqOj/fz8iK6lORUVFfIdXCEhIdgGrEIPjMEXpCpuOBxObGzsoEGDjIyMYmJihgwZovxzCvfv3//XX38tXLhwyJAhSh5adUBftRkSiSQzM9PHx+fChQv9+vUj6rTXL4ddfSs+Pt7U1BTbgPX09CS6qM+AVG0tmUxWVFRka2u7ZMkSBweHuXPnEvJ5Pn369N69e2fNmjVt2jTljw7Uzs2bNzdv3nzr1i0ymawWf4Gys7Ox/kBpaan8BFkVvD45pGpr/fPPPytXrvz9998J/Ep1/fr1qKioPn36REZGqsXHQ9Ggr/rlxGJxcXHx8ePH58+fry6XCKysrJT3Bzp37ozFq6WlJdF1/QdS9avxeLyDBw+SyeTIyMg3b94QOF96cnJyVFSUo6NjZGQksV2nmpoa1XkjXb16tU+fPjQajehCEEKITCarfof34sWLubm5S5YsUf5ugFZKSkrC5h8wMjLC+gOqsG8WUvVLVVZWJiUlDRkyJDU1NT09fcSIETo6OkQV8+bNm6ioKJlMtmDBAlWYxqKyslJ13kj19fUqEqkIIRKJpEanaZ44cSItLe3HH39Uuy397Oxs7OjXoqIi+fkFRH11g1T9vLq6OgqFEh4ePn78+MmTJxNbTGVlZVRU1Js3byIjIzt16kRsMXIqlaoqRb1SFZsKy9ra2sPDIy0tTTXPIGgem82W9wc6deqExauS+wOQqs05dOjQwYMH7969y2KxCO+Ly2SyqKioa9euRUZGqtoR3SqVqhwOx8DAgEQiEV0IUsdUlZs3b565ufmPP/5IdCEt9+DBA6w/YGBggMWrt7e3EsaFVP1YeXn5qVOnAgMDQ0NDHzx4oCLXQTt+/Pi+ffsiIyMnTpxIdC2NUKlUraysNDExgVRtvYyMDC8vr0ePHkkkEhWZCqtlXr9+jW29FhYWyifQUlx/QBWPSyAEm81OTk5GCN26dcvMzCw4OBghpAqRevny5d69e3M4nCdPnqhmpDbq9OnT48ePHzx4cOsXtW3btiVLlnz58w0NDVscqTk5Of3798/MzGzmOZs2bVq5cmXLlq9esD0/7u7uMTEx165dI7qclnN1df3mm2/++OOPmJgYPz+/q1evhoSELFiwICYmpqSkBPfhNOqKaS2WkZGxaNGiVatWIYTGjx9PdDn/SkpKioqK8vLyOn/+vJGREdHlfAWBQHD8+PE+ffr06dOn+Wdu2rQpMDCwX79+OI7+tdcBzMvLW7du3fHjxxFCJiYm48eP15hpPnBhZGQUFRVVXV2NEFq3bl1wcPCgQYOILqqFjI2NhwwZgp0j8+DBg8TExOPHj+vr62P9Abz6yNqbqhKJZP369a9fvz579qyNjc3NmzeJrug/mZmZUVFRTCZz69atqnzidlMEAgFCqGPHjr6+vs0/Mzs7OzAwEN/Rv7avmp2dLb9tYmJC+A5J1YT9XZ87d+6vv/7aq1cvsVistEmCFKRLly5dunRZvnz5mzdvEhISdu3a9f79e/n8A625Rq/W9VXfv39/4cKFGTNmkMnku3fvqtpun9LS0qioqA8fPkRGRnbo0IHocr5Uw75qcnLyDz/8gN2m0WiXL18Wi8VHjx5NTk4uLy/39vYeMmRIcHCwWCwODw/Hnqarq/vXX38hhB4+fPjbb79VVFQ4OTkNGTKkb9++WAeAzWaPHz9+27ZtNTU1zs7Oc+bMaWbaY6yvWlBQEBcX9+LFi/Lycjs7u0GDBg0YMAB7wsiRIydPnpyQkJCenj58+PCLFy9i98+cOdPX13f+/Pm7du3CTotstJ5NmzZxudwtW7ZgY0VHR2dlZQmFwqCgoPHjx7dp06ZhMWrdV22KTCZjs9ljx47duHFjx44diS4HN9XV1fIJtAIDA7H5B6ytrb92OdqyrVpVVcXj8dq0abN//34vLy8Wi0UikVQqUkUiUVRU1P379xcsWIB9etVUcHAw1lRds2YNds2iffv23b59e86cOWFhYQ8ePNi4cePy5ctDQ0NjY2OHDh26aNEirAPw8OHDjRs3Ll261MDAIDs7e9euXQwGo1u3btguxLihv66sAAAgAElEQVS4uBUrVkil0oMHD+7evTs6OrqpArC+KpaGkZGR9vb2iYmJUVFRFhYW2B8qOp0eGxuLhaCvry+VSr1//z7WAcjJyZEvp5l6MGKxeMWKFQKBYPHixY6OjufOnVu4cOG+ffta8DlUL9ifipiYmIcPH2J/R7H9EOrOyMho8ODB2M6AR48eJSQknDhxQldXF9uA/ewXLzmtSNW//vrrwIEDBw4cQAht3bqV6HIacfjw4cOHD0dGRl65coXoWnAmFApv374dERGBNeP69++fkZFx5syZTy8Sd/z48ZCQkB49eiCEOnTowOVyeTwe9lB5efnevXuxr5xDhw7ds2cPh8Np6gxL7Lvb6tWrBQIBdqBieHj4tWvXnj59iqUqmUw2NTWdM2dO85U3Uw8mLS3tw4cPW7duxS6nOHv27OTk5NjY2NmzZ7dunakHY2NjbLtEJBJ16tQpNjZWpU4bbaVOnTp16tRp2bJlb9++jY+P37NnT0FBAdYcCAsLa/40E41N1aqqqj179hgZGS1atCgwMPDWrVtEV9S4Bw8erFq1asyYMQ8ePCC6FoV4/fq1WCxu2M3w8/O7desWn89veGiLRCLJz89vuHer4ZVgnJyc5F087EZdXV1TI2J9ValUeuHChadPnxYWFmL329vby5/z2fOMm68Hk5GRQaPR5FeoJZFIvr6+6enpzS9Z84SGhiYlJZWXlyOEfvvtt8/+uVIvzs7Ozs7O06ZN43A4CQkJN27cWL16dfv27bt16xYREdHoSzQ2VfPz8+U7K1X2Svf//PPPjRs34uLiVH9CthbjcrkIoU8PjWKz2Q3nLuDz+TKZrKmTgL9q14FMJpNIJGvWrJHJZNOnT/fz89PT01u4cGHD53z2lNbm68Fwudz6+vr+/fs3vFO9zqPHC4VCsbKyQggVFRWdOXNm3LhxRFeEP0NDw/DwcGxnwOPHj48dO6ajo9PosYMam6oBAQEBAQFEV9Gct2/fHjp06Ny5c0QXolhYynx6iZeP9uHo6OiQSCQsgltJT0/vzZs3OTk58u/m8nD/cl9Sj4mJCZPJXL9+fcM7tXzaMKz3TXQVCtexY8cXL16UlpY2+qjGpuru3bsdHByGDx9OdCFNmj17dkxMDNFVKFybNm3odDqZTJZPlshms0kkko6OTsNv8VQq1dnZOS0tbfTo0dg9R48era+vb8EVYalUak1NTcPgzsvL+/Dhw1fNLvYl9Tg6OgqFQktLS2wzDdtSMzY2/tqCNYm6H26FC409t8rW1rbh/lxVs2rVqmXLlmnDJ1BPT2/ixIknT55MT08XiUTx8fGrV6/+9ddfEUIMBsPMzOzFixepqalisXjo0KHPnj07f/58amrqlStXsOvRtmBEDodjb29PIpEuXLjA4/HevXt38ODBDh06lJWVNfp8W1tbNpv98OHDDx8+NLz/s/UEBQUFBgbu3r27rKwMuxJEZGSkSh34rHznz58/evQo0VUQTGO3VUePHq2yh+JeuHBBT09PrQ+f+ioRERHOzs4xMTEpKSm6urqenp6LFi3CHho7duyJEyeSk5Oxc7Fqa2tPnjzJ5/NNTEy++eabz56a1SixWGxlZbVixYrTp0+PHDnS1tZ2+fLllZWVP/300+zZs7FDQRoKCgry8vJav379xIkTG04D9iX1/PTTT3FxcVu2bMnKymrTpk2fPn2UfNlHVfPpkRJaSOvOAiDcu3fvFi5ceOHCBaILwZNKza4iFotbc2IMvjTyLIBm8Hg8mUymDX2AAwcOUKnUGTNmfPqQxnYAsGtt1tbWEl3Fx+bMmfPbb78RXYUmU51I1UK6urraEKnN0+T3n6ur67t371Thigty69atmzt3riYdLE2gMWPGiMXiT++XyWTLly9XnSm9tcr58+dra2u1/JKUmpyqzZzUSIjLly+TyWT1ne9H1URFRTV6f3V1tcoeoazxoK+q4akqEolkMhmDwSC6EIQQKikpiY6O1rwTUgkkP57pI2ZmZtAEIIoq7yVWGk3uqz59+nT58uVEV/GvRvc+A0WASCUQ9FU1PFWdnZ2xqXYJt3HjxqlTp340RxxQEA6HA5tLRIHjVTW8A2BpaXns2DGiq0A3btwQCATDhg0juhAFUqnTGaZOnXrq1Cl9fX2iC9FG0FfV8FTFTo40MDAg8CthZWXlrl27bty4QVQBykH4BWgb2rlzp56enkqVpD2gr6rhHQCE0J49e4g9gxDaqcrn5uam5VOcEAj6qpqfqn5+flVVVUSNvn379tGjR7fsZHbQYnPmzOHz+URXoaWgr6r5HYCRI0cSNfSdO3cqKipU5yAE7fHq1SuJREJ0FVoK+qqan6r19fXFxcUNJ4FXjtra2g0bNty9e1fJ4wLsBG0Wi0V0FVoK+qqa3wGg0WijR49W/pYLtFMJBH1VAkFfVfNTFSHUq1evkpISZY64e/fugQMHurm5KXNQIAd9VQJBX1XzOwAIoc2bNytzuMTExIKCAvn8oUD5oK9KIOirakWqlpWVyWQy5UwTJRQKv//++8TERCWMBZoCfVUCjRkzBvqqmt8BSE1N3bNnj3LGgnaqKoC+KoF0dHTgT5rmp6qnp6dyfs379+/v1q2bt7e3EsYCzYC+KoFiYmIOHz5MdBUE0/xUtbW1Xbt2raJHefz4cWZmppZP1qsioK9KID6fLxAIiK6CYJrfV0UIpaSkuLu7M5lMBS1fIpEsWLDg8ePHClo++CrQVyUQ9FW1YlsVIXTixAmFRh5cikqlQF+VQNBX1ZZU7dWrl+K+Eh48eDAwMLB9+/YKWj74WtBXJRD0VbWlAzBw4EAFLfn58+dPnz49ePCggpYPWgD6qgSCvqq2pOqQIUMEAkF9fX1NTQ2VSk1OTsZryXPmzHnw4AFeSwOt0a9fPzqdjhBiMBhjxoyhUChSqdTS0vLIkSNEl6b5hg4dKpVKZTKZTCYjkUg3btzAbsfFxRFdGgE0OVWnTJmSkpJCoVDkExiTyWRzc3O8lj9v3rx9+/ZBC09F0Gi04uLihvewWKzFixcTV5EWcXBwiI+Pb/hZkMlkQUFBhBZFGE3uqx47dszR0bHhnPBSqdTOzg6XhR89etTT0zM4OBiXpYHW8/Pzk0qlDe9xdnbu1asXcRVpkalTp1pYWDS8x8jIaNKkScRVRCRNTlWE0OLFi42MjOQ/UqnUnj17tn6x6enp9+/fnzdvXusXBfAybtw4Gxsb+Y8sFktrP9XKFxAQ4OXl1fCedu3ahYSEEFcRkTQ8Vbt27Tpo0CASiYT9aGZmFhgY2PrFzp49Ozo6uvXLATjy9vb28fGR/9iuXTtc/oKCLzRp0iQTExPstqGh4cSJE4muiDAanqoIoUWLFnl4eEilUqlUamJi4uTk1MoFLly4cOvWrQwGA6cCAW4mTJiAfQ9lsVjjx48nuhztEhAQ4Ovri912cXEJDQ0luiLCaH6qIoQ2btxoaWlJIpF69OjRykWdOnWqbdu22vyOUWXe3t4eHh7QUSXKxIkTTU1NtXxD9YuOARCLUWVhHa9WrJR6FMR03NCFN27ccLLqnJve8skfCwsLH97OXbx4cWsWoiA6ehQLWwaFRiK6kC8iEaPKojpuDf5vqvCe35TmoaF9Rinid6SjSzFvw6CqyUqWimUVxSIeR6y0E0gNqO38XfsJBAJb4/bK/Iyw9KnmNgwKTWkDfgap+ZN2E2Mrsp/V6pvQmCw4fghJpFKKql5lXiKWleQL3AL1e0ZYfMHTifQwrvLVk1odfYq+IU0iVadzxqUSWXGemqzkq5XZT2uZLIq+CV0iln7BK9SYSCCtLhe5BeqHDTNT2qAHDhygUqkzZsz49KHmUvX68VJDM4Z3iFFTTwCq5vWzmg9veENnWRNdSJPunCuj61D9upkQXUjLvX5W8z6bO2y2DVLVbdY758roTKpfdzVeyS2Q8ai6qlg4YKqVcoZrJlWb3PL650yZqTUTIlW9uHYwcPTSjztS/AXPJcD9C+VMPbpaRyq2kp39DC8fVuGVrEvXtkhFCHl1MjK3Y908WUp0IU2kavn7ujq+1D3YUOn1gNZy9NGjUMkfclTuXOyq0vrqMrFPqCb8nXbw0qUzKO+yVXElc8rFPmGasJJbwC3QoF4kKy0QEltG46laWSJSl/0e4FN0JqWisI7oKj5WWVynSW8qOpNcWaxyK5ldWkfS7j0gVBq5skREbA2NpyqPIzYwg+Mx1ZWRBYPPUblJm7gcsbGF5rypDM0ZghoVXMkSTVrJLWBsQecr4NiSr9L4kVUSiUxSr047Z0FD4npJvert9pWIZWKRylXVYqq5kqViaX2dVn9yRSIpleg5o1T0OCEAAFBTkKoAAIAnSFUAAMATpCoAAOAJUhUAAPAEqQoAAHiCVAUAADxBqgIAAJ4gVQEAAE+QqgAAgCdIVQAAwJNqperkqSP37f+Z6CqAGhs8tPup00eJrkLDfe1Kzs3N6dEr8OXLF4osSoWoVqp+oWEjehcVFyp50B/Xr7h6LVbJg4KvNXbMFB9vf+w2Ie8TbaC0laymv0GiZ3f5eoVFHzicauWP+yo7Izi4i/LHBV9lwvhp2A2i3ifaQDkrWX1/g7htq/bt3/nsuePyH7dsWzd3/lTs9oBBoWfOHlvzw5IevQLDh3RbtWZRLbcWeyg/P3f2nEkDw8NWrVmU9Sqj4QIfPkzYtHlNxNiBA8PDliydk5LyDCH05OmjiZOGIYQmTBy65oclCCGxWPzbgT1Tpo0aGB62YuWCR48Sv6RaTg1n67Yfe/QKHDai98ZNq8vLy5oZVCwW9+gVWFpasuPnDYOHdm9+0MrKiuUr5g8a3HXOvCk3blz5/fD+ad9EYA8JBIJf9u+cOGlY3/6dJ00Z8fPOjQKBACH0Jie7R6/AR48SR0X0nzFz3PwF079fFdmw2rU/LF21ZlFLfzPqasy4QSdOHsZuczjVPXoFbti4Sv7okGE9Y/48ef6v06Mi+icm3evVJxjrHWFfTr/8fdJw5c+cNYGg/yuRmloz129c7tUnOCfnNfZjZlY6tqKaWcnNE9WLftm/M2LswIixAw9ER0kk/85OW1xS9OP6FaMi+vcb0GXW7Imnz/zx0Sd97Q9LFbkC8KeMDgCNRj//1+kRw8fevpW8bcu+dwV5v+z/GSFUX1+/YuV35uaWRw//OWP6vNOnj1ZXsbGX8Pn8jZtXi8Xi9T/uOHr4T1tbu9VrF1VXVwUFdtqyaQ9C6NTJ2I0/7UQI7d6z5cLFsyNHjDtz+krXsJ7r1i+PT7jTfD319fUrV0Vyaqp37Tzw3fxlJaXF369aIBaLmxqUSqVev5qEEFq2dO3l2HvND7p9x/r37wt2/nxg/brtSQ/uP3qcSKH8Ozl71N5td+7emDtn8V/nb06bOvvuvZsHD+1FCNFpdITQ70f2j4mYtGTxmoEDhj558pBTw8FeJRQKHz1O7BamdVe3DwrsnJ6Rit1+9jzZ2NgkLT0F+zE/P7e2tiawQycajS4Q8M+eO77y+5+GD41o8NovfZ80XPmLFq1qohZN1tSa6d9vsI+P/85dGxFCMpls566NffoM7NQpVP7CT1dy8/bu2+7u7rXy+58mjJ9+LuYE1k+TSqVLl80tryjbtHF3zNmroaE9Dv3+y737/zRc+Iaf1GxfizJSlUQiOTu1ax8QRCaTvbx8hwwZde/eLbFYHJ9wp6ysdN7cJZaWVk5OLvPnLZVvw7JYrN8PnV0Y+b2Hu5elpdXMbxfw+fz09NSPliwUCm/eihs/buqQwSMNDQwHDRzWs0e/k/+/gdOUpAf3s7LS58xaGOAf2Ktnv3lzlzg6ulRVsVs/aGVlRfKTh2PHTnF387SwsFyyeHVJSRH2qpramtt3rk+ZPLNLl676evo9e/QdMXzszVtxYrEYi92QLt1Gj5rg4e7Vu9cAOp1++/Z17IWJSfcQQiEh3XH6bagNf//AtLQX2BbNy5fP+/cbXFXFLi0tQQilpD4zNTVzcnKhUCh8Pv+b6XN79+rfpo19U4tq5lf20cpX7n+ReM1/gpYt/SEv/+3Va7F/x/7J4VQvmL+8NWO1Dwjq3at/gH/g0CGjPDy87969iRB6/DipqOjDimXr3Fw9DA2NJk38xsfH/9r1Szj9/4ihpL1Vzs6u8tu2NnYikaiw8H1h4Xsmk2ll9e9lli0trUxN/7ucN5/H27tv+6iI/j16BWLfu6s5VR8t9tWrDLFYHBTYWX5PgH/gm5xsHo/XTDF5eTl6enr29g7Yjx7uXmtWbTQ3t2j9oHn5bxFC8ka+oaGRv38gdvvDh3disdjT00f+Kjc3Tz6fX/z/zXjXdh7YDTqd3q9v+D+3r2E/JiTcCenSTU9P73PrWNME+AcKBIK3uW8QQmnpKV6evp6ePtjm6suXz9u3D5Y/083Vs/lFffZ9Il/52ub166xm1oytTZtpU2cfPLTvyJFfly5Z28o3YcNRPD18sA2O/IJcFosl/zBiv4u3b1+3ZiDl0NHR0dHRafQhJe2tYjCY8ttMHR2EEF/Ar6nh6Or+z++Jyfy3ypKS4shFM4ICO69dvdnT00cqlfYfGPLpYrm8WoTQd5HffHQ/m12hq6vbVDFcHlc+UEOtH5TH48r/gxhjIxPs3cNmVyCEmA3Wg44OC1sPuixdhBCd8d/lhgaHj5wxc1xpaYmhodHj5KS1qzc39X/RYKamZvb2Di9fPre0sMrLexsQEJSZlZaW9qJ3r/5Pnz2eO+e/RjOdTm9+Uc38ykgk0kcrX6twuZ/5BI0cMe7Y8YNUCtXXJ6CVYzX8sLNYrFpuDfb1DvsgNHxIIOC3ciwlEAgE1Cau5aKoVJVK/udCaVjcYIQCAUKIpcMyMDAU1f3PVSr5/H+3He7cvVFfX79i+Y9MJhNb9Y2OYmJihhBasni1ra1dw/vNzCyaqU2Xpcvn86RSKZn8P5vqrR+0sPA9Qkgi/u9iZFXV/3aKsbeUQPjftY6x/6yZqfmn7yFn53bubp5Xr/3t6Oiio8Pq2LGRcNcGHTp0TEtLsbCwcnJyYbFYPt7+hw7/UlCQV1tbExz0FcdjNPMrq6wsV0DhasPE9DOfoDNnj9nYtBGJRAcP7V0Y+X1rxhI2ePPz+DxDAyOEkK6urvxTL3/I1NS8NQMRDrdUZTAYDdPh3bt8SoMgT019Jr/9JiebyWTa2LSxsrSu5dYWFOS1beuIEHqVnVn1/3urOJxqfX0DLN0QQvfjbzc6qJ1dWzqdTqFQAv7/izabXUkikZraMse4uXry+fzs11lYH+3du/xdezYvmL+89YPa2LRBCOXlv7Wza4sQ4nK5z58nY3c6O7tSKJT09FTXdu7Yq7Ky0g0NjUxMTAsLG/nLPHDgsPN/nc7Nzenda0BTfxI1XvuAoKi928zNLf38OiCEvL39Cwrykh7cd3JyMTEx/fLltOx9og3a2No3s2by83OPHT+4b+8RgYC/ZOmcvn0GNWxhfa3Xb17Jd3a9epWBfS7cXD0FAkFubo6Tkwv2UFZWuqODMx7/OcLg1lf18vJLSLyLtWNOnDxcyf6fDb3yirLzf52WSCQFBXmXr/zVtWsvGo3WpUs3Op3+866NQqGwoqJ885a1+voG2PNdnF0rKyvirv4tFosfPU5KS3thYGBYVlaCELKzd0AI3b//T2ZWur6e/tQps/44Fp2WliISie7d/2fZinlRe7c1X2rHjiG2tnYHD+5NSLz75OmjPVFbKysr7O0dmhmUwWCYm1s8f578IuWpDlOnqUHt7R3s7Nr+cSy6qLiQy+XuidpibW2LDWqgb9CrV/8TJ39/8CC+llt782bcxb/PjR41AfsG+qlePfuXlZU8efpw4IChOP2K1I+/XyCbXfnoUYK3lx9CSE9Pz8HBKS7uYvuA4M++tvXvE22gp6fX1JoRi8UbN6/u1zfcw92rfUBQj+59Nm/9QSz+n4tCN1zJzYwilUqx74JPnj5CCN24cSUzM6179z4IoeDgLjbWtj/v2vgqO5PNrjx85NesrPSI0RO/fOEqCLeNoO/mL9u5c2P4kG5UKnVMxKTevQa8ePFE/ujg8BEvX77Y/+su7ICM+fOWYr/RTRt3R0dHhQ/pxmQyZ82MvH7jMtY66N17QMG7vKN/HPh558bg4C4rlq07c/bYiZOHa2trIhes6N9v8JGjv3l7+e3eFT1u7BQXF7fTZ/94/jxZV1fP28tv2dIfPvN/plJ/3v7rlm0//LBuGUKoc+ewTRt2UanU5gedMH760T8OPHqceOb0lWYGXbFs3Y6dGyZOGubs1K5v30G6unqvX2f9u4rmLfuNsnvDplVisdjW1m7SxBljIiY1VSSLxerQoWN5Wamjo3r/3W4NPT09V1ePV68y2gcEYfd4e/nFXjov/7EZtjZtWvk+0RJNrZmTp45UVJTv2vnvodPz5i6ZMGnoiZO/T5s6W/7aj1ZyU0PU14sQQt9+M/9A9J7lK3IsLCwnTpjev99g7MO4ccOuA9F75s6bwmAwnJzabdqwy8vLt+HCfbz9d+08oJSVgQ+STNbI1cOTb7DrhMi/uwkuYwwd3mvkiHGTJ83AZWkqjsOpFgqFlpZW2I8rVy9kMpjrftj6tcsRCoURYwbMmhU5aOCwr31tVnK1oLa+2wjVak49u13FrZa27/0V39xVmWqu5Bd3q6orpIF9NWQlt0BqPJtKRZ0G4JNdzThw4ACVSp0xo5FY09KGneKsXbe0sqJ8zuxFXl6+V+IuPnv2eMvmqK9agkAgqKws//XAbgdHZ23++g+AmtLMVM3IePn9ygVNPXrm9BXFHf750487duzccOBgVGVleVt7xx9/2Nah/eebgA39ef7U0T8OeHn5rlu7tamuKwAqhcBPnApSRqrGXmx8Z7rieHn5Hjx4uqlHFfoLNjIy3rRhV2uWMHnSDC3plgCNQeAnTgVp5rYqQsjayoboEgDQIvCJk1PL+VUBAEBlQaoCAACeIFUBAABPkKoAAIAnSFUAAMATpCoAAOAJUhUAAPAEqQoAAHiCVAUAADw1nqpMFoVKg8BVVxQqmaWncmfNMXXIFLrmvKlUcyXTWRSqll4s5l80GllHl0JsDY2/yw3NaSX5anDpGNCo0nyBoZnKfeCNLOgleZrzpiorEBiYqtxKNjGnl+QKvuCJGqskn29I9O+l8VS1a6cjEkobm3kVqAFeTX1b9yYvhkgUaycdmUwmqdeQdxWvpt7eTeVWspUDk0RCYpGGrOQWEPAkdm6sL3iiAjWeqmQKqUu46a2TRUqvB7TW7TPF7XsYM1gq912bTEZhQ81undKEN9WdM8X+3Yx09FRuJZPIKGSo2T+nC4kuhBg3TxZ2GWRKoRI8f2aTm8p2rjpUOunsjlz/bqZGFnQd1WshgYbq+JKKImHW4+oeoy3aehD8t7opVg7M7iPNTm95276XmaE5XdeAql7fh0QCaUWRIPNRdfdRFg6eKrqSrR2Y3Uean9rytkNvc0NTmq6hmq3kFhByJVVldanx7IHTrG2cmF/wCsVq/AorckKe5Pnd6tJ3Qh5H3MzTAOH0TWgmFnS/bkYGJqr+96++Tvrsn+riAoGQK5FIcPjEczg1Bvr6JLKitlDKyysoFDKDwTA0Z9jYG/h3M1aHlSx7druqOF9Qx5eK66VKG1corJPJZDo6So02liHFso1OQA8jlr7y9lO1/AorTF1Kl3DtvQYOUAQag9xpEG6XFSouLp45c9Xly5fxWuCn5szZ+ujRIxKJZGRkZGZm5p/l361bt5CQEMWN2Ho0BqnTQIVfu+lTf/zxB5fL/Xb+fOUPrTpU/U8uAM3Lysry9PRU6BADBgxIT08XCAQ1NTUcDuft27dXrlwxNjaOi4tT6LhATalcux2Ar5KZmenh4aHQIcLCwiwtLbHbJBKJRCKJRKKiIk3Y7QYUAVIVqDclbKsaGxv7+PhIpf91J2Uy2YsXLxQ6KFBfkKpAvWVlZbm7uyt6lAEDBpia/ruDQSqVbtiwQdEjAvUFqQrUWGFhoYGBgYGBgaIHCg4OxpoAUqn0+fPnjx49evv2raIHBWoKUhWoMSU0VeW6desmk8meP3+OEPrpp58EAgGHw1HO0EC9QKoCNZaVlaW0VP32229dXFzkP3p7e5PJZGgFgE9BqgI1psxURQidO3eu4Y/6+vq+vr4vX75UWgFALUCqAjWmhAMAmjd06FBra+uCggICawCqBlIVqKt3796ZmJjo6hI8cZS5ubm5uXlERASxZQDVAakK1NWrV6+U+fW/GSwWa+vWrXAEK8BAqgJ1pcwDAD7LycnJ29s7OTkZDgwAkKpAXSl5V9Vn0Wi04ODgESNGiEQiomsBRIJUBeoqMzOT2F1Vjbp9+/b79+9hi1WbQaoCtVRQUGBpaamjo0N0IY1wdnZ+8+ZNfHw80YUAYkCqArWkUk3VTwUGBsbGxvJ4PKILAQSAVAVqSdWaqp/auXOnSCTKyckhuhCgbJCqQC2pZlP1I8bGxnV1dfv27SO6EKBUkKpALanOwarN8/LyMjAw4PP5RBcClAdSFaif3NxcGxsbBoNBdCFfZMqUKVQq9e7du0QXApQEUhWoH9Vvqn6ETqe7urpOnz6d6EKAMkCqAvWjFk3Vj9ja2i5cuFAikRBdCFA4SFWgfl69eqWEq6rgztfXl0KhHD16tLS0lOhagAJBqgL1w2AwHBwciK6ihcLCwu7fv090FYrCYrEIn0VMOXR1dZv6n0KqAvXDZDJTU1OJrqIlKioqxGKxBk8byOfzteTcBx6P19T/FFIVqB93d/dXr14RXcVX27x5M5lMVsfeBfgqkKpA/Xh6emZmZhJdxdfJzs52d3c3MTEhuhCgcJCqQP14eHhkZWURXcVXeP36tZmZ2YgRI4guBCgDpCpQP6amphQKpaysjOhCvsiYMWOsra1NTU2JLgQoCaQqUEvqsrmalZW1efNmfX19ogsBygOpCtSS6rdWuVxufHy8q6urs/F+rGwAAB5TSURBVLMz0bUApYJUBWrJw8NDlQ8DEIvF4eHhXbt2pVAoRNcClI1KdAEAtISHh4fKbqtWVVXx+fx79+4RXQggBmyrArVkbGzMYDBKSkqILuRjCQkJmZmZtra2RBcCCAOpCtSVCu6wqquru3DhQkhICNGFACJBqgJ1pWqpmp2dXV9fv3v3bqILAQSDVAXqSqUOA9i3bx+fz9fT0yO6EEA8SFWgrlTnMACJRGJgYBAQEEB0IUAlQKoCdWVoaMhisYqKiogt4+bNm9hlVIgtA6gOSFWgxghvrc6dO9fV1RUOSgUNQaoCNebh4bFx48Y+ffq0b9++T58+yi9g1qxZ6jt/NlAQOAsAqJ+hQ4d++PABu00ikbAbRkZGyqzht99+mzNnjp+fnzIHBWoBtlWB+vn222+NjIxIJJI8UrGrQimtgP79+0MjFTQFUhWon/Dw8IEDB1Kp/33TMjAwUM6x95WVlQih69evs1gsJQwH1BGkKlBLS5Ys8fX1lclk2I+GhoZKuJZ1dnb2mTNnFD0KUHeQqkBd7dixw9HRESEklUpNTEysrKwUPeLx48fnz5+v6FGAuoNUBerK0NBwxYoVFhYWZDI5ODhYoWMlJycjhDZt2qTQUYBmgGMAAKFkSMCTcKvF//9V/uu0tfIdNfibK1eueDh1Kntfh395CJEQevj0vlDEUXRwA41BkrXs7QxAq71+XvsykVNdVm9myxDwJESX0zgymVTDFuqw6N4hBv7dlHrwlhoZMGBAWVmZVCqlUChSqZREIkmlUktLy+vXrxNdmqIcOHCASqXOmDHj04dgWxUQI+NRTW4av/toawZLDU5MqhNIU+6yH11jdxoAl55uxJAhQw4fPoydY0YmkxFCFAqlZ8+eRNdFDOirAgJkPKzJz+R3j7BSi0hFCDF0yB0HmvG50kdXK4muRRVFRETY2dk1vMfW1nb8+PHEVUQkSFWgbGKR7NWz2q4jFb7LHndBfc3Ki0TV5fVEF6JyTE1N+/Xr1/CesLCwNm3aEFcRkSBVgbKxS0T1dVKiq2ghEiJVFClkt5i6i4iIsLe3x27b2tqOGTOG6IoIA6kKlK2mqt7SXofoKlrIzJbJrRITXYUqMjEx6dOnD3YOcVhY2EcNAa0CqQqUTSKWCVV1j/9n1ddJ60XquqGtaGPGjGnbtq2NjU1ERATRtRAJjgEAQBu9fy0oL6zjVot5HAkik4U8fDbAe3islIglz+Joz1Bx65dGZ1JISKZrSNEzpJrb0u3d1WPuBUhVALRIfiY/7UHN+2yeoQWLTKPSGBQqg0ahUigsfI5bt3NxxWU5GBmZVF8v4ZdKit/XZ6cK2YeK7Fx1vTsbOPvq4jgK7iBVAdAKRW+F9y5UUBh0pj7LvZsZmUL6ghepFmt385oy3rN4/oO4yq7Dzdqq6qYrpCoAGk4mQzdOVhQXCCydTVlGDKLLaTkSCRla6iJLXUGt6N4Ftpk1b+AUc5Lq7RtSvYoAALg6seVdnYTu2MFGrSO1IR19etsAKxmNdWR9fr1I5c65h1QFQGNJxLLf1+ZbuJgbWqp0I7Jl9EyZdn7Wf6wvULWjMiBVAdBYh9bkOQbbMvXpRBeiKHQdartQu+jvc4ku5H9AqgKgmc7t+mDvZ0mhav5n3KVzm+Ob3xFdxX80f40DoIUe32DrGOuzjJhEF6IMTD2acRujhFhVmfgGUhUATSPkSVLuVRtY6RFdiPLom+u+ecFVkYlvIFUB0DTxf1daOGvdPLBmjibxFyuIrgJBqgKN8uf5U337d/7y+zUSjyMpL6o3ttUnupDG1dRWLF3b8WXGXdyXbGDB4tWiiiIR7kv+WpCqQHN4evhMnPANdvvCxXNbtq379H6Nl5vOpdC19OweMp2Wm8Ylugo4twpoEC8vXy8vX+z2q+wMbFa6j+7XeDmpPF0TA6KrIIa+Oevty8rgfgR3PyBVgXpISrq/b/+O8vIyF2fX4cPH9O83GCG09oeldDrdwsLq7Lnj63/cXlpafOj3X25ef/hd5Dfp6akIoZs346IPnExNfYbdjxCSSCTnYk4cP3GIRCJ5evhMmzrb29uP6P8cbqQSVCeUGTsqavpaTk35pWt7Ct6niUQCd9cuvbtNtzBvixBKeHj2TvzxKeO2xlzcVFaRb23p0jVkfFDAIOxVL17evH47WijkerqFhnUZq6DaEEIsQwa3lCLgSXV0ifwWDh0AoAaSku6vW798xjfzt27ZGxLSfdv29Xfu3kQI0Wi07OzM3LycTRt2+foEyJ+/L+qwh4d3376D7t5+6trOveGiog/uvXz5rw0/7VyzapOZucX3qxZ8+KBChzq2Epcj5lYraj+4RCI+cHReXkHq6KGrl353lqVjuO/gN5XsQoQQlULnC2r+jts1ZsSaHT898vHs/uffm6o5ZQih4tKc0+d/CAwYuCLyz/Z+/f+O26Wg8jD8WjFPYWvgC8G2KlADR/74rWtYz969+iOEggI7cbm1PB4Xu5BnRWX54d/PMRhfdIZ7dXXVn+dPLYz8PiiwE0KoY8cQPo9XUVHepo294v8TysCvEdOZirrAYm7+i/KKglnT9rdzCkQIDR24KOt1UuKjmKEDF5HIZImkfsjAhW3tfBBCHfwH3rz7+4eiV0aGFg8e/2VkaNWn+zcIoXbOQTW1Fbn5zxVUIUKISqfwaiRmtoob4QtqIHJwAL6ARCLJy3uLfeXHzJ2zSH67rb3jF0YqQig3Lwch5OHhjf1IpVI3/PQz3vUSiV8roevSFLTwvIIUCoWGRSpCiEQiOTu2zytIkT/B3tYLu6HD1EcICYS1CKEK9nsrSyf5c+xsPRVUHoamQxNwlXGlCRqNRqM1vqohVYGqEwgEMplMR6fxyTTpXxypCCEutxYhxGpiURqATEZihV1pUSDkSiT1S9d2bHingb6Z/LZ892BDfH6NhVlb+Y90umIvWSYRSZUzN2B9fb1M1vh0WZCqQNUxmUwSiYQFYivp6uohhGrxWJRq0jWkiusUdbFCfX1TOl1n+oSdDe+kUD7TcGCxDOrF/12Vtq6Op6DyMGKRWNeA4FiDvVVA1VGp1HYubqkv/2vGHfr9l19/292CRbVr506hUFJTn2E/ymSy71dF3rhxBb9iCcYyoIqEivr+a2PZTiQSmBhbuzh1wP4ZGVraWLs1/ypjI+uC9+lS6b9b0FmvkxRUHkZcJ9E1UFRn+QtBqgI1MGL42CdPHp6LOfEi5WnspfNnzh5zdmrX/Etsbe2yszNfpDytqmLL7zTQN+jbZ1Bs7J/Xrl96kfJ03y87nj177KVBR1bpGlBY+lSpRCETObu7dnZv1/ncxY1V1SVcXnXio5i90dOePL/c/Kv8vHrXcisvX4+SyWQ5uc8eJl9QRG1yFCrJyJzgmQ+hAwDUQL9+4TW1nGPHD/J4PFNTs1kzF/TrF978SwYPGrFz96aly+Zu27qv4f2RC1bsidq6c9cmiUTi4uy6Yf3PbWw16sr15rb0mlKekY1CplaZPnHXwycXTsasKXifZm7WNjAgPLTTZy5S7dau46C+8x89uZjw8KyRodX4UT/+eni2TKaQ5m9tOd/QjEr4NVdITTVcAVCQ7Ge1uWn80OGWRBfSEil32UwWCuqrunOXvH3JfXSz1tbLguhCCFCSXeEdzPTuYqiEsQ4cOEClUmfMmPHpQ0SnOgAAV84+ekiqjEOLVJBMInHxI35aGegAAKBZSKidv27+a3ZTkwFKJOJ1W/s1+pBYLKJSaKixA6SsLV3mzYjGscx1W/pJpE0criCTNVqDqbHtornHm1pgZQHH1pHOJPRcVQykKgCaJriv8fM7uaZtjRq9vAqFQl0890SjLxQKuUxm4w1ZCgXnkwsiZx9t6iFRfR2d1shhyGRyczv3i1+zR85ywam6VoFUBUAD9RhtnvGEY9LWuNFHTYxtlF6RYmuo/lDddYQ5amQDlwDEby0DAHDn1kHf1AJVfeAQXYgycIprWTpi31Bl7KT6EpCqAGimbiPMkFhY+V5jTyTDVJfwhBxu34kqdEgJpCoAGmv4HBs6Wcj+UEN0IYpSXVwr4tSOWdSG6EL+B6QqAJps8AwrI0NxRR4badyB6ex3HCa1LmIhobP+NQZSFQAN1zPC3CuQmX47ryK/muha8FH5jpPxT56LF7X/ZBX64i8HxwAAoPk8gvU9gvUTL1UWpJWQqFR9M5a+ufpNh8itFNSU8UlSsbUjffgMl2aPsyISpCoA2iJ0iGlQH+nr59zXKbWvsyuodAqVTqHQKTQmtanj8YlFJiOxSCKpF9fXSRCS6RtTvQL1XANMdfRVNVARglQFQLswdMg+IQY+IQYyGaosFvFqxPwacb1IJq5X1FzXrUGhkGkMuq4BVdeAYmzJoKhJXKlJmQAAXJFIyMyGbmZD8KR5GglSFSgblUbS0VPpb3DNoDHIDB3VOIMHqCo4BgAom4kl/f0bxV5mQ3GK8/hG5oq63B7QDJCqQNmMLen6RrQ6gSo28j5LKpHZOiv2enZA3UGqAgJ0Hmhy49gHoqv4ajePF/mFGVJo0AEAzYG+KiCAZVvmwGnW537O6zzIQt+EpmdEU+VrUgi4Ek65KOVeZbeR5m3awYYq+AxIVUAMYwvahBX2yTfZqfECmRTxanA7YFIsllCpuO0NI5MRU5di5cDsP8XK1Br2mIPPg1QFhNHRo3QbYY77Ynv06HHp0iV9feKvtAG0E/RVgaaZN28eg9HITPIAKAdsq4L/a+/O45o48z+APzSQhEvLjaIccimHEokUERUU1ypVsa2KCKIT3VrxaLfY0vXVeteuB15oq5gRrSJbKXiCFyreioIkWEQFj1WwFpArCCEhvz/istQfKNKJU8Ln/fIPmJk8zzdoPnn4zpjRNh9//DHbJUCnhrUqaJvNmzfX1dWxXQV0XkhV0DbJyckNDQ1sVwGdF1IVtA36qsAu9FVB26CvCuzCWhW0DfqqwC6kKmgb9FWBXUhV0DboqwK70FcFbYO+KrALa1XQNuirAruQqqBt0FcFdiFVQdugrwrsQl8VtA36qsAurFVB26CvCuxCqoK2QV8V2IVUBW0zf/58Pp/PdhXQeaGvCtomJCSE7RKgU8NaFbTNxo0b0VcFFiFVQdukpqairwosQqqCtkFfFdiFvipoG/RVgV1Yq4K2iY2NRV8VWIRUBW1TVVV17do1tqsAbZaWlpaenu7n59fiXh2VSvXWSwLQrMLCQkdHR7FYPGTIEGdnZ7bLAe2RmppK07RAIBCJRHZ2di0eg1QFrZWdnb169WqapjkcDpfLZbsc6NiSkpJomh46dChFUd26dXvFkUhV0HJKpbK0tHTZsmVffPGFg4MD2+VAx7Nz506apseMGUNRlKmp6WuPR18VtByHw7GysgoPDz958iQh5MGDB2xXBB2DUqnctm2br69vVVVVWlpadHR0WyIVqQqdha+v78yZM9VtgYiIiPLycrYrgr8umUy2adOmQYMGEUIuXLgwd+5cQ0PDtj8cHQDodPLz8/X09JycnDIyMoYPH852OfAXUl5eTtP0oUOHKIqKjIxs3yBIVei8VqxY8fDhw61bt7JdCLCvpKSEpunMzEyKokJDQ//MUEhV6NSePn1qaWmZmZn59OnTCRMmsF0OsOD+/fs0Tefk5FAUNX78+D8/IFIVgNTX169fv97BwWHixIls1wJvT0FBAU3ThYWFFEWNHj2aqWGRqgAvyOVyLpcbFRUlEAhmzJjBdjmgQRKJRCwWl5aWikSiYcOGMTs4UhXgD5RKZXx8fHh4uFKp1NPTMzAwYLsiYFJWVpZYLJbL5SKRSH2Wn3FIVYCWVVdXBwcHx8TEMPi7IbDo/PnzYrGYz+eLRCKhUKi5iZCqAK9y8eJFPz+/jIwMDw8PKysrtsuB9sjIyBCLxZaWliKRyNPTU9PTIVUBXi8vLy8mJiYuLs7e3p7tWuANpKWl0TTt6OgoEolcXFzezqRIVYC2KisrMzMzW7JkSWRkJOL1Ly4lJYWmaW9vb4qiWvtwKQ1BqgK8mczMzAMHDsTGxlZWVnbt2pXtcuBle/fupWk6MDCQoihra+u3XwBSFaCdrl69mpCQsGjRIvRb/yISEhJomh43bhxFUSYmJmyVgftWAbSTj48PIUQqlVpZWd28edPd3Z3tijophUJB07RYLI6IiDh69CjrF8PhM6sA2s/HxycoKIgQcurUqbCwMIVC0XxvcHBwcHDw9evX2StQy6k/XMrf3199tcacOXNYj1R0AAAYc/v2bVtb24qKiuzsbPUlrgKBgMPh2Nra7tmzR19fn+0CtUpZWRlN00eOHKEoaurUqWyX8wdIVQAmKRSKpUuXGhsbnz17tqSkhBCiUqkGDhwYFxfHdmlaori4mKbpc+fOURQ1adIktstpAVIVgHnPnj0bMWJE07dcLjc0NHTevHmsFtXh3b9/XywW5+bmUhQVEhLCdjmtQqoCMG/s2LHFxcXNt5ibm8fExAQEBLBXVAdWUFAgFouLiopEItGoUaPYLuc1cA0AQJvI6xsV8rYuQcp/l/H1uqpUKpVK9c477zQ2NlaW18VtiLe2sLO1tdVsodrl3r17YrG4vLw8LCzM/xt/QkhttfKNRlCpiGEXjsYKbAHWqgCvkXX8Wf7VKn0jTlV5Q1uOr6urb+1lpa/PZ7o6LSeXyzkcXQ6n/VcrGZvolZXU27sZeg8zsbTlMVpdy5CqAK1TkQNbi7v1MuzhbGBsqsd2NdBOygZVVXnDhQO/+Y+z6Omi8Tc2pCpAq/b/8NjBo0uvvsZsFwLMSKcf+Y4yte2t2Wta8b8AAFpWcL3GrJs+IlWbjAjvnn26QtOzIFUBWlZy7znf6K2e5QBN0+W+U1EqrypXtOHY9kOqArSsQd5oao2TS9qmh7Phs6dyjU6BVAVoWfUzRaOyke0qgGGySkWjUrMnk5CqAABMQqoCADAJqQoAwCSkKgAAk5CqAABMQqoCADAJqQoAwCSkKgAAk5CqAABMQqoCADAJqQoAwCSkKoBmPXr0MHC4MOva5bc5aWHhna9i5o4Y6bsncce+5D1/e39gu4cqKrobOFwold5gtMAXbt+5FThcePOm5BXHLF7yVfSC2ZqYXUOQqgBa6PiJIxJpzpJFq4YPe9+tj2f4FBHbFf1ByIdBxSWPCSFmpuZTI2aYm1uyXRGTcDdAAC1UWyuzsenp5zeEEGJt3c3dvS/bFf3P4+JHlZUvPjrazMx8+rRZbFfEMKQqAGMuXz6f9POugoJfLSys3Nw8Z4rmmJmZq3cplcpVq5emHz1oZmY+ZPCweXO/VG8veVK8deuGvJu51dVV9na9hg4NCps87Uja/o2bVh05dFZXV5cQErvuu0OHU3buSLa1tSeEpKT+e8eOHw4eOK2jo9NiGbPnTMvPzyOEBA4XzhBFcbnc+O1xx49eIoSMHRcYFjZdJqvZvYc2NDT0GeA3Jyra1NSMEHLp0rlTp4/lSrJraqr79PaICJ/h5eXd9udeU1OzL3n31asX7z8oMjU19x8UMH3aLD6fTwgZMzZg+rRZmecyJJKcxYtWLV7yJSFkSvi4QYOGTo2Y+cms8LiNtDr3790rXLdhpVR6o3s3m8GDh4mo2Xp6f7hdmEKhiN8ed/nK+d9//83TUzB+3ERfX/8/8TemEegAADDj9p1bXy/8zNPDa+eOX2bP+vzu3YI1scub9u7ctU0gGBC79seJE8JT9/98+swJQkhjY2P0gtm/lz5dsXzdz0lp/v6B8dvjzmSeFHr7yuXyO3duqR8rkeaYmJhK8150NqXSHG/v91qLVELIlriED4LHOzo6n864NiVsevNdXB4vMXEHj8c/eOB0Ap0skebs+imeEFJbW7v8u4UKhWLJ4tU7xPtsbHou/ObziopnbX/6yb8kJu5NCA2NTNx9cG5UdMapo7v3iNW79LjclNQkJyfX1as2D/IbsnLFekLInt0Hli9d23yE4pLH8z+b0a9v/7Vrfpg0aerJjPTNW9a+NMu69StTUpM++nDy3sTDQwYPW7Tky7PnTrW9yLcDa1UAZuRJb/D5fGr6pzo6OpaWVn36eBTdu9u0t79gwIigUYQQgZcwJTVJIskODBhx5cqF4uJHK1esVy9CI8JFWdcupR89GDA0qHv3HrmS7D59PJ49K3/48H74FCovLzd4dAgh5Ebu9Xb/1qyjo+Pq6hY+hSKEGBsZe3u/p17VGhgYbI9PMtA36Nr1XULI32fOO3Q4JS8v198/oI0jh06aGhgwws7OgRDi6+sfMHREVtalGaIoQgiHwzG3sJwbFf3qEZKT9/D4/GmRn3A4nP6CARwOp7DwdvMD6urqjp84EjZ52tgxHxFCgkeH5OXl7t4tHjJ4WPt+GhqCVAVghoenV11dXcw/5wcGjPD0FNh07yHwEjbt9fTwavrayMi4vr6eEHL/QZGBgYE6UtVcnPucyTyhTuG8m7nqhaqzk6uXl3D9hu8JIQ8e3KuoeObt/V6763Rx6dO8EpmsRv11rUy2fXtcriS7rKxUvaWi8g3Wqnp6elezLn6/avHduwUKhYIQYm5u0fx5vXaEwqI7rq5uHM6Le4Wp30Kau3XrpkKhGCD83/UMAi/h0WOH6uvreTxe20vVNKQqADNcnHuv/G7D2bMZa2NXKBSKAULfaZGfuLl5qvdydFt4rZWVlerr/+EuygYGBs+f1xJCvLyEa2OXE0Jyc697egrc3foWFz+qrKzIuXHN0tLKpnuPdtfZYuvgyZOS+Z/PGCAc+M3C79zcPBsbG98fPeiNht3y47oTJ9L+PnPuAOFAKyvrrds2nsxIb9rL5XJfO4JMVmNpYfWKA2pk1YSQufNfvp6hpqYaqQqgnXzfG+T73iBq+qfXr1/Z98uerxd+lpJ8/BXHGxoa1tbKmm+R1crMzCwIIUKh7/Pnz4uK7kqkOVMjZvJ4PBeXPjdyr0sk2c0Xa0w5dfpYQ0PDV18uVp9falqutlFjY2Na2v6JE8I/CB6v3lJTU/2mNRgYGNb8d+HcIlNTc0LIF/9YaGPTs/l2Y+MubzqXRuFsFQAzcm5cU1/qb25uMXLkB7M//UdVVeWT30pe8RBXFzd1dDZtyc/Pc7B3JIR07dLV2cn1atbFwsI7/fr2J4R4uPeTSHMk0hyh0Jfx4isrK4yNu6gjlRCSeTbjjR4ul8vr6urU7wfqby9dPvemNfR2dZdKc9TdA0JIxqljC76MUiqVTQf07GnH5XI5HI7AS6j+Y2frYG/Xqy0L4bcJqQrADIkk59tF0YePpFZWVvyan5ea+m8LC0srS+tXPMTHx697N5s1sctvFfxaXl4mprfk5+dNnBCu3isQDDh8OMXevpf6DJKHR7/Ll86Vl5f9maZqa5wcXcrKSo+k7VcoFJevXJBKc7p06fr06ZM2PpzP59vY9Dx67JD6WtRVa5YKvIRVVZV1dXX//+CetvaEkMzMk7/m5zXfPnbMR3K5PHbdd9euXzl3/nT89k0WFlZNbVb16bVpkZ8k7Nwqld6Qy+VnMk8u+Cpqw8Z//elnzzB0AACYMTk0srq6alPc6rWxK/h8fmDA39bFbtNtqZ3aRFdXd/my2B+3rp8dFcnj8Xr1cl6xLLbpin2Bl/DnfbvV57sJIf369i8uedzb1c3YyJjx4oOCRj14eG9Hwo9r1i738fH7asGivUk7f9otrq6uGvPBR20Z4dtvVm7esnba9I/5PP6cqOi+/fpfvnx+bEjg7l37XzrSpnuP90eOoXf84OHe79NPP2/a3qOH7fcrN65Zsyz96EEej/f+yDEzRHNeeuzk0EgnJ9fEpITs7KuGhkYe7v0WRH/LxA+ASToqlWZvjQ3QQaVsfuzpb2ptr892IcCkU0klff27OLgbam4KdAAAAJiEDgBAx3PzpiTm63mt7d2beNjIyIjxSUM+DFL+91TSS/759bKBAwczPmMHhVQF6Hjc3ftu25bY2l5NRCoh5Ictu1rbZfKuqSZm7KCQqgAdUjfr7lo/YweFvioAAJOQqgAATEKqAgAwCakKAMAkpCoAAJOQqgAATEKqAgAwCakKAMAkpCoAAJOQqgAt62Kq9w5eH1rHsKsuR7fV29MyAv9qAFqmx9MpK5GzXQUw7D8FMhNLzd47AKkK0DIbR/06Wcsf0QQdVP3zRlNrrrGJZj//BKkK0DKnfkaVZfKCrEq2CwHGnPzp8YAgE03PgnsBALxKesKTdy153R0NTa3/Wrecg7arkymryhsuHvxtZIS1ZU+N3+MaqQrwGjfOVORnVeno6FSWos3a8XQx48qqFHa9DYRBJiZWb+OtEakK0CaqRqJowIul41GpCJev2ZP+L0GqAgAwCWerAACYhFQFAGASUhUAgElIVQAAJiFVAQCYhFQFAGDS/wFvZcGFEbF0sgAAAABJRU5ErkJggg==",
      "text/plain": [
       "<IPython.core.display.Image object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "graph_visualiser(build_joke_graph(chat_model_writer,chat_model_critic))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "754b0e32",
   "metadata": {},
   "source": [
    "## **Main Code**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "8d69b7e3",
   "metadata": {},
   "outputs": [],
   "source": [
    "def main():\n",
    "    print(\"\\n🎭 Starting article bot with writer–critic LLM loop...\")\n",
    "    graph = build_joke_graph(chat_model_writer,chat_model_critic)\n",
    "    final_state = graph.invoke(\n",
    "        AgenticResearchArticleState(category=\"nlp\",\n",
    "                                    title=\"Solving the myth and facts of child development with nlp\"), \n",
    "        config={\"recursion_limit\": 1000}\n",
    "    )\n",
    "    print(\"\\n✅ Done. Final Article Count:\", len(final_state[\"article\"]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "eca50538",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "🎭 Starting article bot with writer–critic LLM loop...\n",
      "🎭 Menu | Category: NLP | Articles: 0\n",
      "--------------------------------------------------\n",
      "Pick an option\n",
      "\n",
      "CATEGORY: NLP\n",
      "\n",
      "\n",
      "\"Solving the myth and facts of child development with nlp\"\n",
      "\n",
      "\n",
      "this study delves into the intersection of natural language processing (nlp) and child development, a promising yet under-explored field. by leveraging advanced nlp techniques, we aim to uncover hidden patterns and insights in vast amounts of data related to child development, debunking common myths and confirming established facts. our research focuses on sentiment analysis of parental interactions, identifying developmental milestones from speech patterns, and understanding the impact of environmental factors on language development. the findings of this study could potentially revolutionize our understanding of child development and pave the way for personalized educational interventions.\n",
      "\n",
      "============================================================\n",
      "🎭 Menu | Category: NLP | Articles: 1\n",
      "--------------------------------------------------\n",
      "Pick an option\n",
      "\n",
      "🚪==========================================================🚪\n",
      "    GOODBYE!\n",
      "============================================================\n",
      "\n",
      "✅ Done. Final Article Count: 1\n"
     ]
    }
   ],
   "source": [
    "main()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}