import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) def classify_text(text): # Tasks: emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task = 'emoji' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # Download label mapping labels = [] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # Load model model = AutoModelForSequenceClassification.from_pretrained(MODEL) text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output.logits[0].detach().numpy() scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] results = [] for i in range(scores.shape[0]): label = labels[ranking[i]] score = scores[ranking[i]] result = f"{i+1}) {label} {np.round(float(score), 4)}" results.append(result) return results iface = gr.Interface( fn=classify_text, inputs="text", outputs="text", title="Text Classification", description="Classify the text into different categories.", example="Looking forward to Christmas" ) iface.launch()