File size: 13,593 Bytes
9d2b604 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
from datetime import datetime
import pandas as pd
import plotly.express as px
import streamlit as st
from utils.convert_to_excel import convert_dfs, save_dataframe
from utils.utils_vars import get_physical_db
class TraficAnalysis:
last_period_df: pd.DataFrame = None
############### PROCESSING ###############
def extract_code(name):
name = name.replace(" ", "_") if isinstance(name, str) else None
return int(name.split("_")[0]) if name and len(name) >= 10 else None
def preprocess_2g(df: pd.DataFrame) -> pd.DataFrame:
df = df[df["BCF name"].str.len() >= 10].copy()
df["2g_data_trafic"] = df["TRAFFIC_PS DL"] + df["PS_UL_Load"]
df.rename(columns={"2G_Carried Traffic": "2g_voice_trafic"}, inplace=True)
df["code"] = df["BCF name"].apply(extract_code)
df["date"] = pd.to_datetime(df["PERIOD_START_TIME"], format="%m.%d.%Y")
df["ID"] = df["date"].astype(str) + "_" + df["code"].astype(str)
df = df.groupby(["date", "ID", "code"], as_index=False)[
["2g_data_trafic", "2g_voice_trafic"]
].sum()
return df
def preprocess_3g(df: pd.DataFrame) -> pd.DataFrame:
df = df[df["WBTS name"].str.len() >= 10].copy()
df["code"] = df["WBTS name"].apply(extract_code)
df["date"] = pd.to_datetime(df["PERIOD_START_TIME"], format="%m.%d.%Y")
df["ID"] = df["date"].astype(str) + "_" + df["code"].astype(str)
df.rename(
columns={
"Total CS traffic - Erl": "3g_voice_trafic",
"Total_Data_Traffic": "3g_data_trafic",
},
inplace=True,
)
df = df.groupby(["date", "ID", "code"], as_index=False)[
["3g_voice_trafic", "3g_data_trafic"]
].sum()
return df
def preprocess_lte(df: pd.DataFrame) -> pd.DataFrame:
df = df[df["LNBTS name"].str.len() >= 10].copy()
df["lte_data_trafic"] = (
df["4G/LTE DL Traffic Volume (GBytes)"]
+ df["4G/LTE UL Traffic Volume (GBytes)"]
)
df["code"] = df["LNBTS name"].apply(extract_code)
df["date"] = pd.to_datetime(df["PERIOD_START_TIME"], format="%m.%d.%Y")
df["ID"] = df["date"].astype(str) + "_" + df["code"].astype(str)
df = df.groupby(["date", "ID", "code"], as_index=False)[["lte_data_trafic"]].sum()
return df
############################## ANALYSIS ################
def merge_and_compare(df_2g, df_3g, df_lte, pre_range, post_range, last_period_range):
# Load physical database
physical_db = get_physical_db()
physical_db["code"] = physical_db["Code_Sector"].str.split("_").str[0]
physical_db["code"] = (
pd.to_numeric(physical_db["code"], errors="coerce").fillna(0).astype(int)
)
physical_db = physical_db[["code", "Longitude", "Latitude", "City"]]
physical_db = physical_db.drop_duplicates(subset="code")
df = pd.merge(df_2g, df_3g, on=["date", "ID", "code"], how="outer")
df = pd.merge(df, df_lte, on=["date", "ID", "code"], how="outer")
# print(df)
for col in [
"2g_data_trafic",
"2g_voice_trafic",
"3g_voice_trafic",
"3g_data_trafic",
"lte_data_trafic",
]:
if col not in df:
df[col] = 0
df.fillna(0, inplace=True)
df["total_voice_trafic"] = df["2g_voice_trafic"] + df["3g_voice_trafic"]
df["total_data_trafic"] = (
df["2g_data_trafic"] + df["3g_data_trafic"] + df["lte_data_trafic"]
)
df = pd.merge(df, physical_db, on=["code"], how="left")
# Assign period based on date range
pre_start, pre_end = pd.to_datetime(pre_range[0]), pd.to_datetime(pre_range[1])
post_start, post_end = pd.to_datetime(post_range[0]), pd.to_datetime(post_range[1])
last_period_start, last_period_end = pd.to_datetime(
last_period_range[0]
), pd.to_datetime(last_period_range[1])
last_period = df[
(df["date"] >= last_period_start) & (df["date"] <= last_period_end)
]
def assign_period(date):
if pre_start <= date <= pre_end:
return "pre"
elif post_start <= date <= post_end:
return "post"
else:
return "other"
df["period"] = df["date"].apply(assign_period)
comparison = df[df["period"].isin(["pre", "post"])]
pivot = (
comparison.groupby(["code", "period"])[
["total_voice_trafic", "total_data_trafic"]
]
.sum()
.unstack()
)
pivot.columns = [f"{metric}_{period}" for metric, period in pivot.columns]
pivot = pivot.reset_index()
# Differences
pivot["total_voice_trafic_diff"] = (
pivot["total_voice_trafic_post"] - pivot["total_voice_trafic_pre"]
)
pivot["total_data_trafic_diff"] = (
pivot["total_data_trafic_post"] - pivot["total_data_trafic_pre"]
)
for metric in ["total_voice_trafic", "total_data_trafic"]:
pivot[f"{metric}_diff_pct"] = (
(pivot.get(f"{metric}_post", 0) - pivot.get(f"{metric}_pre", 0))
/ pivot.get(f"{metric}_pre", 1)
) * 100
return df, last_period, pivot.round(2)
############################## UI #########################
st.title("📊 Global Trafic Analysis - 2G / 3G / LTE")
doc_col, image_col = st.columns(2)
with doc_col:
st.write(
"""
The report analyzes 2G / 3G / LTE traffic :
- 2G Traffic Report in CSV format (required columns : BCF name, PERIOD_START_TIME, TRAFFIC_PS DL, PS_UL_Load)
- 3G Traffic Report in CSV format (required columns : WBTS name, PERIOD_START_TIME, Total CS traffic - Erl, Total_Data_Traffic)
- LTE Traffic Report in CSV format (required columns : LNBTS name, PERIOD_START_TIME, 4G/LTE DL Traffic Volume (GBytes), 4G/LTE UL Traffic Volume (GBytes))
"""
)
# with image_col:
# st.image("./assets/trafic_analysis.png", width=250)
upload_2g_col, upload_3g_col, upload_lte_col = st.columns(3)
with upload_2g_col:
two_g_file = st.file_uploader(
"Upload 2G Traffic Report", type=["csv", "xls", "xlsx"]
)
with upload_3g_col:
three_g_file = st.file_uploader(
"Upload 3G Traffic Report", type=["csv", "xls", "xlsx"]
)
with upload_lte_col:
lte_file = st.file_uploader(
"Upload LTE Traffic Report", type=["csv", "xls", "xlsx"]
)
pre_range_col, post_range_col = st.columns(2)
with pre_range_col:
pre_range = st.date_input("Pre-period (from - to)", [])
with post_range_col:
post_range = st.date_input("Post-period (from - to)", [])
last_period_range_col, number_of_top_trafic_sites_col = st.columns(2)
with last_period_range_col:
last_period_range = st.date_input("Last period (from - to)", [])
with number_of_top_trafic_sites_col:
number_of_top_trafic_sites = st.number_input(
"Number of top traffic sites", value=25
)
if len(pre_range) != 2 or len(post_range) != 2:
st.warning("⚠️ Please select 2 dates for each period (pre and post).")
st.stop()
if not all([two_g_file, three_g_file, lte_file]):
st.info("Please upload all 3 reports and select the comparison periods.")
st.stop()
if st.button("🔍 Run Analysis"):
df_2g = pd.read_csv(two_g_file, delimiter=";")
df_3g = pd.read_csv(three_g_file, delimiter=";")
df_lte = pd.read_csv(lte_file, delimiter=";")
df_2g_clean = preprocess_2g(df_2g)
df_3g_clean = preprocess_3g(df_3g)
df_lte_clean = preprocess_lte(df_lte)
full_df, last_period, summary_df = merge_and_compare(
df_2g_clean, df_3g_clean, df_lte_clean, pre_range, post_range, last_period_range
)
# 🔍 Display Summary
st.success("✅ Analysis completed")
st.subheader("📈 Summary Analysis Pre / Post")
st.dataframe(summary_df)
TraficAnalysis.last_period_df = last_period
#######################################################################################################""
#######################################################################################################
if TraficAnalysis.last_period_df is not None:
df = TraficAnalysis.last_period_df
# Get top trafics sites based on total data trafic during last period
top_sites = (
df.groupby(["code", "City"])["total_data_trafic"]
.sum()
.sort_values(ascending=False)
)
top_sites = top_sites.head(number_of_top_trafic_sites)
st.subheader(f"Top {number_of_top_trafic_sites} sites by data traffic")
chart_col, data_col = st.columns(2)
with data_col:
st.dataframe(top_sites.sort_values(ascending=True))
# chart
fig = px.bar(
top_sites.reset_index(),
y=top_sites.reset_index()[["City", "code"]].agg(
lambda x: "_".join(map(str, x)), axis=1
),
x="total_data_trafic",
title=f"Top {number_of_top_trafic_sites} sites by data traffic",
orientation="h",
text="total_data_trafic",
text_auto=True,
)
# fig.update_layout(height=600)
with chart_col:
st.plotly_chart(fig)
# Top sites by voice trafic during last period
top_sites_voice = (
df.groupby(["code", "City"])["total_voice_trafic"]
.sum()
.sort_values(ascending=False)
)
top_sites_voice = top_sites_voice.head(number_of_top_trafic_sites)
st.subheader(f"Top {number_of_top_trafic_sites} sites by voice traffic")
chart_col, data_col = st.columns(2)
with data_col:
st.dataframe(top_sites_voice.sort_values(ascending=True))
# chart
fig = px.bar(
top_sites_voice.reset_index(),
y=top_sites_voice.reset_index()[["City", "code"]].agg(
lambda x: "_".join(map(str, x)), axis=1
),
x="total_voice_trafic",
title=f"Top {number_of_top_trafic_sites} sites by voice traffic",
orientation="h",
text="total_voice_trafic",
text_auto=True,
)
# fig.update_layout(height=600)
with chart_col:
st.plotly_chart(fig)
#####################################################
min_size = 5
max_size = 40
# Map of sum of data trafic during last period
# Aggregate total data traffic
df_data = (
df.groupby(["code", "City", "Latitude", "Longitude"])["total_data_trafic"]
.sum()
.reset_index()
)
st.subheader("Map of data trafic during last period")
# Define size range
# Linear size scaling
traffic_data_min = df_data["total_data_trafic"].min()
traffic_data_max = df_data["total_data_trafic"].max()
df_data["bubble_size"] = df_data["total_data_trafic"].apply(
lambda x: min_size
+ (max_size - min_size)
* (x - traffic_data_min)
/ (traffic_data_max - traffic_data_min)
)
# Custom blue color scale: start from visible blue
custom_blue_red = [
[0.0, "#4292c6"], # light blue
[0.2, "#2171b5"],
[0.4, "#084594"], # dark blue
[0.6, "#cb181d"], # Strong red
[0.8, "#a50f15"], # Darker red
[1.0, "#67000d"], # Very dark red
]
fig = px.scatter_map(
df_data,
lat="Latitude",
lon="Longitude",
color="total_data_trafic",
size="bubble_size",
color_continuous_scale=custom_blue_red,
size_max=max_size,
zoom=10,
height=600,
title="Data traffic distribution",
hover_data={"code": True, "total_data_trafic": True},
hover_name="code",
text=[str(x) for x in df_data["code"]],
)
fig.update_layout(
mapbox_style="open-street-map",
coloraxis_colorbar=dict(title="Total Data Traffic (MB)"),
coloraxis=dict(cmin=traffic_data_min, cmax=traffic_data_max),
font=dict(size=10, color="black"),
)
st.plotly_chart(fig)
########################################################################################
# Map of sum of voice trafic during last period
# Aggregate total voice traffic
df_voice = (
df.groupby(["code", "City", "Latitude", "Longitude"])["total_voice_trafic"]
.sum()
.reset_index()
)
st.subheader("Map of voice trafic during last period")
# Linear size scaling
traffic_voice_min = df_voice["total_voice_trafic"].min()
traffic_voice_max = df_voice["total_voice_trafic"].max()
df_voice["bubble_size"] = df_voice["total_voice_trafic"].apply(
lambda x: min_size
+ (max_size - min_size)
* (x - traffic_voice_min)
/ (traffic_voice_max - traffic_voice_min)
)
fig = px.scatter_map(
df_voice,
lat="Latitude",
lon="Longitude",
color="total_voice_trafic",
size="bubble_size",
color_continuous_scale=custom_blue_red,
size_max=max_size,
zoom=10,
height=600,
title="Voice traffic distribution",
hover_data={"code": True, "total_voice_trafic": True},
hover_name="code",
text=[str(x) for x in df_voice["code"]],
)
fig.update_layout(
mapbox_style="open-street-map",
coloraxis_colorbar=dict(title="Total Voice Traffic (MB)"),
coloraxis=dict(cmin=traffic_voice_min, cmax=traffic_voice_max),
font=dict(size=10, color="black"),
)
st.plotly_chart(fig)
final_dfs = convert_dfs(
[full_df, summary_df], ["Global_Trafic_Analysis", "Pre_Post_analysis"]
)
# 📥 Bouton de téléchargement
st.download_button(
on_click="ignore",
type="primary",
label="Download the Analysis Report",
data=final_dfs,
file_name=f"Global_Trafic_Analysis_Report_{datetime.now()}.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
)
|