File size: 18,574 Bytes
027f03b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1de5db
 
027f03b
 
 
 
 
 
 
 
 
 
d1de5db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
027f03b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1de5db
 
027f03b
 
 
 
 
 
 
 
d1de5db
 
 
027f03b
 
 
 
d1de5db
 
 
 
027f03b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1de5db
 
 
027f03b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1de5db
 
 
 
 
 
 
 
 
027f03b
 
 
 
d1de5db
 
 
 
027f03b
 
 
 
 
 
 
 
 
 
 
 
d1de5db
027f03b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1de5db
027f03b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1de5db
 
 
 
 
 
 
 
027f03b
 
 
 
 
 
d1de5db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
027f03b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26cb917
027f03b
26cb917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
027f03b
 
 
 
 
 
 
 
 
 
 
 
d1de5db
027f03b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1de5db
027f03b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import numpy as np
import pandas as pd

from queries.process_lte import process_lte_data
from utils.convert_to_excel import save_dataframe
from utils.kpi_analysis_utils import (
    LteCapacity,
    analyze_prb_usage,
    cell_availability_analysis,
    create_dfs_per_kpi,
    create_hourly_date,
    kpi_naming_cleaning,
)

LTE_ANALYSIS_COLUMNS = [
    "code",
    "code_sector",
    "Region",
    "site_config_band",
    "Longitude",
    "Latitude",
    "LNCEL_name_l800",
    "LNCEL_name_l1800",
    "LNCEL_name_l2300",
    "LNCEL_name_l2600",
    "LNCEL_name_l1800s",
    "avg_prb_usage_bh_l800",
    "avg_prb_usage_bh_l1800",
    "avg_prb_usage_bh_l2300",
    "avg_prb_usage_bh_l2600",
    "avg_prb_usage_bh_l1800s",
    "avg_prb_usage_bh_l800_2nd",
    "avg_prb_usage_bh_l1800_2nd",
    "avg_prb_usage_bh_l2300_2nd",
    "avg_prb_usage_bh_l2600_2nd",
    "avg_prb_usage_bh_l1800s_2nd",
    "avg_act_ues_l800",
    "avg_act_ues_l1800",
    "avg_act_ues_l2300",
    "avg_act_ues_l2600",
    "avg_act_ues_l1800s",
    "avg_dl_thp_l800",
    "avg_dl_thp_l1800",
    "avg_dl_thp_l2300",
    "avg_dl_thp_l2600",
    "avg_dl_thp_l1800s",
    "avg_ul_thp_l800",
    "avg_ul_thp_l1800",
    "avg_ul_thp_l2300",
    "avg_ul_thp_l2600",
    "avg_ul_thp_l1800s",
    "num_congested_cells",
    "num_cells",
    "num_cell_with_kpi",
    "num_down_or_no_kpi_cells",
    "prb_diff_between_cells",
    "load_balance_required",
    "congestion_comment",
    "final_comments",
]

LTE_DATABASE_COLUMNS = [
    "code",
    "Region",
    "site_config_band",
    "final_name",
    "Longitude",
    "Latitude",
]

KPI_COLUMNS = [
    "date",
    "LNCEL_name",
    "Cell_Avail_excl_BLU",
    "E_UTRAN_Avg_PRB_usage_per_TTI_DL",
    "DL_PRB_Util_p_TTI_Lev_10",
    "Avg_PDCP_cell_thp_UL",
    "Avg_PDCP_cell_thp_DL",
    "Avg_act_UEs_DL",
]
PRB_COLUMNS = [
    "LNCEL_name",
    "avg_prb_usage_bh",
    "avg_prb_usage_bh_2nd",
    "avg_act_ues",
    "avg_dl_thp",
    "avg_ul_thp",
]


def lte_analysis_logic(
    df: pd.DataFrame,
    prb_usage_threshold: int,
    prb_diff_between_cells_threshold: int,
) -> pd.DataFrame:
    lte_analysis_logic_df = df.copy()
    lte_analysis_logic_df["num_congested_cells"] = (
        lte_analysis_logic_df[
            [
                "avg_prb_usage_bh_l800",
                "avg_prb_usage_bh_l1800",
                "avg_prb_usage_bh_l2300",
                "avg_prb_usage_bh_l2600",
                "avg_prb_usage_bh_l1800s",
            ]
        ]
        >= prb_usage_threshold
    ).sum(axis=1)

    # Add Number of cells  LNCEL_name_l800	LNCEL_name_l1800	LNCEL_name_l2300	LNCEL_name_l2600	LNCEL_name_l1800s
    lte_analysis_logic_df["num_cells"] = lte_analysis_logic_df[
        [
            "LNCEL_name_l800",
            "LNCEL_name_l1800",
            "LNCEL_name_l2300",
            "LNCEL_name_l2600",
            "LNCEL_name_l1800s",
        ]
    ].count(axis=1)

    # Add Number of cell with KPI
    lte_analysis_logic_df["num_cell_with_kpi"] = lte_analysis_logic_df[
        [
            "avg_prb_usage_bh_l800",
            "avg_prb_usage_bh_l1800",
            "avg_prb_usage_bh_l2300",
            "avg_prb_usage_bh_l2600",
            "avg_prb_usage_bh_l1800s",
        ]
    ].count(axis=1)

    # Number of Down or No KPI cells = num_cells -num_cell_with_kpi
    lte_analysis_logic_df["num_down_or_no_kpi_cells"] = (
        lte_analysis_logic_df["num_cells"] - lte_analysis_logic_df["num_cell_with_kpi"]
    )

    # Check Max difference between avg_prb_usage_bh_l800 avg_prb_usage_bh_l1800 avg_prb_usage_bh_l2300 avg_prb_usage_bh_l2600 avg_prb_usage_bh_l1800s
    lte_analysis_logic_df["prb_diff_between_cells"] = lte_analysis_logic_df[
        [
            "avg_prb_usage_bh_l800",
            "avg_prb_usage_bh_l1800",
            "avg_prb_usage_bh_l2300",
            "avg_prb_usage_bh_l2600",
            "avg_prb_usage_bh_l1800s",
        ]
    ].apply(lambda row: max(row) - min(row), axis=1)

    # Add Load balance required column =  Yes if prb_diff_between_cells > prb_diff_between_cells_threshold else No
    lte_analysis_logic_df["load_balance_required"] = lte_analysis_logic_df[
        "prb_diff_between_cells"
    ].apply(lambda x: "Yes" if x > prb_diff_between_cells_threshold else "No")

    # Add Next band column
    lte_analysis_logic_df["next_band"] = lte_analysis_logic_df["site_config_band"].map(
        LteCapacity.next_band_mapping
    )

    # Add congestion comments
    # if  num_congested_cells == 0 and num_down_or_no_kpi_cells == 0 = " No Congestion"
    # if  num_congested_cells == 0 and num_down_or_no_kpi_cells > 0 = "No congestion but Down cell"
    # if  num_congested_cells > 0 and num_down_or_no_kpi_cells > 0 = "Congestion but Colocated Down Cell"
    # Else Need Action
    conditions = [
        (lte_analysis_logic_df["num_congested_cells"] == 0)
        & (lte_analysis_logic_df["num_down_or_no_kpi_cells"] == 0),
        (lte_analysis_logic_df["num_congested_cells"] == 0)
        & (lte_analysis_logic_df["num_down_or_no_kpi_cells"] > 0),
        (lte_analysis_logic_df["num_congested_cells"] > 0)
        & (lte_analysis_logic_df["num_down_or_no_kpi_cells"] > 0),
    ]

    choices = [
        "No Congestion",
        "No congestion but Down cell",
        "Congestion but Colocated Down Cell",
    ]

    lte_analysis_logic_df["congestion_comment"] = np.select(
        conditions, choices, default="Need Action"
    )

    # Add "Actions" column
    # if load_balance_required = "Yes" and congestion_comment = "Need Action" then "Load Balancing parameter tuning required"
    # if load_balance_required = "Yes" and congestion_comment = "Need Action" then "Add Layer"
    # Else keep congestion_comment
    conditions = [
        (lte_analysis_logic_df["load_balance_required"] == "Yes")
        & (lte_analysis_logic_df["congestion_comment"] == "Need Action"),
        (lte_analysis_logic_df["load_balance_required"] == "No")
        & (lte_analysis_logic_df["congestion_comment"] == "Need Action"),
    ]

    choices = [
        "Load Balancing parameter tuning required",
        "Add Layer",
    ]

    lte_analysis_logic_df["actions"] = np.select(
        conditions, choices, default=lte_analysis_logic_df["congestion_comment"]
    )

    # Add Final Comments
    # if "actions" = "Add Layer" then "'Add' + 'next_band''
    # Else keep "actions" as it is
    lte_analysis_logic_df["final_comments"] = lte_analysis_logic_df.apply(
        lambda row: (
            f"Add {row['next_band']}"
            if row["actions"] == "Add Layer"
            else row["actions"]
        ),
        axis=1,
    )

    # create column "sector" equal to conteent of  "LNCEL_name_l800" if not empty else "LNCEL_name_l1800" if not empty else "LNCEL_name_l2300"
    lte_analysis_logic_df["sector"] = (
        lte_analysis_logic_df["LNCEL_name_l800"]
        .combine_first(lte_analysis_logic_df["LNCEL_name_l1800"])
        .combine_first(lte_analysis_logic_df["LNCEL_name_l2300"])
        .combine_first(lte_analysis_logic_df["LNCEL_name_l2600"])
        .combine_first(lte_analysis_logic_df["LNCEL_name_l1800s"])
    )
    # remove rows where sector is empty
    lte_analysis_logic_df = lte_analysis_logic_df[
        lte_analysis_logic_df["sector"].notna()
    ]
    # Add sector_id column if sector contains : '_1_" then 1 elif sector contains : '_2_" then 2 elif sector contains : '_3_" then 3
    lte_analysis_logic_df["sector_id"] = np.where(
        lte_analysis_logic_df["sector"].str.contains("_1_"),
        1,
        np.where(
            lte_analysis_logic_df["sector"].str.contains("_2_"),
            2,
            np.where(lte_analysis_logic_df["sector"].str.contains("_3_"), 3, np.nan),
        ),
    )
    # add code_sector column by combine code and sector_id
    lte_analysis_logic_df["code_sector"] = (
        lte_analysis_logic_df["code"].astype(str)
        + "_"
        + lte_analysis_logic_df["sector_id"].astype(str)
    )

    # remove '.0' from code_sector
    lte_analysis_logic_df["code_sector"] = lte_analysis_logic_df[
        "code_sector"
    ].str.replace(".0", "")

    # lte_analysis_logic_df = lte_analysis_logic_df[LTE_ANALYSIS_COLUMNS]
    return lte_analysis_logic_df


def dfs_per_band_cell(df: pd.DataFrame) -> pd.DataFrame:
    # Base DataFrame with unique codes, Region, and site_config_band
    all_codes_df = df[
        ["code", "Region", "site_config_band", "Longitude", "Latitude"]
    ].drop_duplicates()

    # Configuration for sector groups and their respective LNCEL patterns and column suffixes
    # Format: { "group_key": [(lncel_name_pattern_part, column_suffix), ...] }
    # lncel_name_pattern_part will be combined with "_<group_key>" or similar
    # Example: for group "1", pattern "_1_L800" gives suffix "l800"
    sector_groups_config = {
        "1": [
            ("_1_L800", "l800"),
            ("_1_L1800", "l1800"),
            ("_1_L2300", "l2300"),
            ("_1_L2600", "l2600"),
            ("_1S_L1800", "l1800s"),
        ],
        "2": [
            ("_2_L800", "l800"),
            ("_2_L1800", "l1800"),
            ("_2_L2300", "l2300"),
            ("_2_L2600", "l2600"),
            ("_2S_L1800", "l1800s"),
        ],
        "3": [
            ("_3_L800", "l800"),
            ("_3_L1800", "l1800"),
            ("_3_L2300", "l2300"),
            ("_3_L2600", "l2600"),
            ("_3S_L1800", "l1800s"),
        ],
    }

    all_processed_sectors_dfs = []

    for sector_group_key, band_configurations in sector_groups_config.items():
        # Start with the base DataFrame for the current sector group
        current_sector_group_df = all_codes_df.copy()

        for lncel_name_pattern, column_suffix in band_configurations:
            # Filter the original DataFrame for the current LNCEL pattern
            # The pattern assumes LNCEL_name contains something like "SITENAME<lncel_name_pattern>"
            filtered_band_df = df[df["LNCEL_name"].str.contains(lncel_name_pattern)]

            # Select relevant columns and rename them for the merge
            # This avoids pandas automatically adding _x, _y suffixes and then needing to rename them
            df_to_merge = filtered_band_df[
                [
                    "code",
                    "LNCEL_name",
                    "avg_prb_usage_bh",
                    "avg_prb_usage_bh_2nd",
                    "avg_act_ues",
                    "avg_dl_thp",
                    "avg_ul_thp",
                ]
            ].rename(
                columns={
                    "LNCEL_name": f"LNCEL_name_{column_suffix}",
                    "avg_prb_usage_bh": f"avg_prb_usage_bh_{column_suffix}",
                    "avg_prb_usage_bh_2nd": f"avg_prb_usage_bh_{column_suffix}_2nd",
                    "avg_act_ues": f"avg_act_ues_{column_suffix}",
                    "avg_dl_thp": f"avg_dl_thp_{column_suffix}",
                    "avg_ul_thp": f"avg_ul_thp_{column_suffix}",
                }
            )

            # Perform a left merge
            current_sector_group_df = pd.merge(
                current_sector_group_df, df_to_merge, on="code", how="left"
            )

        all_processed_sectors_dfs.append(current_sector_group_df)

    # Concatenate all the processed sector DataFrames
    all_sectors_dfs = pd.concat(all_processed_sectors_dfs, axis=0, ignore_index=True)
    # save_dataframe(all_sectors_dfs, "all_sectors_dfs.csv")

    return all_sectors_dfs


def lte_database_for_capacity(dump_path: str):
    dfs = process_lte_data(dump_path)
    lte_fdd = dfs[0]
    lte_tdd = dfs[1]

    lte_fdd = lte_fdd[LTE_DATABASE_COLUMNS]
    lte_tdd = lte_tdd[LTE_DATABASE_COLUMNS]

    lte_db = pd.concat([lte_fdd, lte_tdd], axis=0)

    # rename final_name to LNCEL_name
    lte_db = lte_db.rename(columns={"final_name": "LNCEL_name"})

    # save_dataframe(lte_db, "LTE_Database.csv")
    return lte_db


def lte_bh_dfs_per_kpi(
    dump_path: str,
    df: pd.DataFrame,
    number_of_kpi_days: int = 7,
    availability_threshold: int = 95,
    prb_usage_threshold: int = 80,
    prb_diff_between_cells_threshold: int = 20,
    number_of_threshold_days: int = 3,
    main_prb_to_use: str = "",
) -> pd.DataFrame:

    # print(df.columns)

    pivoted_kpi_dfs = create_dfs_per_kpi(
        df=df,
        pivot_date_column="date",
        pivot_name_column="LNCEL_name",
        kpi_columns_from=2,
    )
    cell_availability_df = cell_availability_analysis(
        df=pivoted_kpi_dfs["Cell_Avail_excl_BLU"],
        days=number_of_kpi_days,
        availability_threshold=availability_threshold,
    )
    prb_usage_df = analyze_prb_usage(
        df=pivoted_kpi_dfs["E_UTRAN_Avg_PRB_usage_per_TTI_DL"],
        number_of_kpi_days=number_of_kpi_days,
        prb_usage_threshold=prb_usage_threshold,
        analysis_type="BH",
        number_of_threshold_days=number_of_threshold_days,
        suffix="" if main_prb_to_use == "E-UTRAN Avg PRB usage per TTI DL" else "_2nd",
    )
    prb_lev10_usage_df = analyze_prb_usage(
        df=pivoted_kpi_dfs["DL_PRB_Util_p_TTI_Lev_10"],
        number_of_kpi_days=number_of_kpi_days,
        prb_usage_threshold=prb_usage_threshold,
        analysis_type="BH",
        number_of_threshold_days=number_of_threshold_days,
        suffix="" if main_prb_to_use == "DL PRB Util p TTI Lev_10" else "_2nd",
    )
    act_ues_df = pivoted_kpi_dfs["Avg_act_UEs_DL"]
    # Add Max and avg columns for act_ues_df
    act_ues_df["max_act_ues"] = act_ues_df.max(axis=1)
    act_ues_df["avg_act_ues"] = act_ues_df.mean(axis=1)
    dl_thp_df = pivoted_kpi_dfs["Avg_PDCP_cell_thp_DL"]
    # Add Max and avg columns for dl_thp_df
    dl_thp_df["max_dl_thp"] = dl_thp_df.max(axis=1)
    dl_thp_df["avg_dl_thp"] = dl_thp_df.mean(axis=1)
    ul_thp_df = pivoted_kpi_dfs["Avg_PDCP_cell_thp_UL"]
    # Add Max and avg columns for ul_thp_df
    ul_thp_df["max_ul_thp"] = ul_thp_df.max(axis=1)
    ul_thp_df["avg_ul_thp"] = ul_thp_df.mean(axis=1)

    bh_kpi_df = pd.concat(
        [
            cell_availability_df,
            prb_lev10_usage_df,
            prb_usage_df,
            act_ues_df,
            dl_thp_df,
            ul_thp_df,
        ],
        axis=1,
    )
    bh_kpi_df = bh_kpi_df.reset_index()
    prb_df = bh_kpi_df[PRB_COLUMNS]

    # drop row if lnCEL_name is empty or 1
    prb_df = prb_df[prb_df["LNCEL_name"].str.len() > 3]
    # prb_df = prb_df.reset_index()
    prb_df = prb_df.droplevel(level=1, axis=1)  # Drop the first level (date)
    # prb_df = prb_df.reset_index()
    # prb_df["code"] = prb_df["LNCEL_name"].str.split("_").str[0]

    lte_db = lte_database_for_capacity(dump_path)

    db_and_prb = pd.merge(lte_db, prb_df, on="LNCEL_name", how="left")

    # if avg_prb_usage_bh is "" then set it to "cell exists in dump but not in BH report"
    # db_and_prb.loc[db_and_prb["avg_prb_usage_bh"].isnull(), "avg_prb_usage_bh"] = (
    #     "cell exists in dump but not in BH report"
    # )
    # drop row if lnCEL_name is empty or 1
    db_and_prb = db_and_prb[db_and_prb["LNCEL_name"].str.len() > 3]

    lte_analysis_df = dfs_per_band_cell(db_and_prb)
    lte_analysis_df = lte_analysis_logic(
        lte_analysis_df,
        prb_usage_threshold,
        prb_diff_between_cells_threshold,
    )

    lte_analysis_df = lte_analysis_df[LTE_ANALYSIS_COLUMNS]
    # Rename columns
    lte_analysis_df = lte_analysis_df.rename(
        columns={
            "LNCEL_name_l800": "name_l800",
            "LNCEL_name_l1800": "name_l1800",
            "LNCEL_name_l2300": "name_l2300",
            "LNCEL_name_l2600": "name_l2600",
            "LNCEL_name_l1800s": "name_l1800s",
            "avg_prb_usage_bh_l800": "prb_l800",
            "avg_prb_usage_bh_l1800": "prb_l1800",
            "avg_prb_usage_bh_l2300": "prb_l2300",
            "avg_prb_usage_bh_l2600": "prb_l2600",
            "avg_prb_usage_bh_l1800s": "prb_l1800s",
            "avg_prb_usage_bh_l800_2nd": "prb_l800_2nd",
            "avg_prb_usage_bh_l1800_2nd": "prb_l1800_2nd",
            "avg_prb_usage_bh_l2300_2nd": "prb_l2300_2nd",
            "avg_prb_usage_bh_l2600_2nd": "prb_l2600_2nd",
            "avg_prb_usage_bh_l1800s_2nd": "prb_l1800s_2nd",
            "avg_act_ues_l800": "act_ues_l800",
            "avg_act_ues_l1800": "act_ues_l1800",
            "avg_act_ues_l2300": "act_ues_l2300",
            "avg_act_ues_l2600": "act_ues_l2600",
            "avg_act_ues_l1800s": "act_ues_l1800s",
            "avg_dl_thp_l800": "dl_thp_l800",
            "avg_dl_thp_l1800": "dl_thp_l1800",
            "avg_dl_thp_l2300": "dl_thp_l2300",
            "avg_dl_thp_l2600": "dl_thp_l2600",
            "avg_dl_thp_l1800s": "dl_thp_l1800s",
            "avg_ul_thp_l800": "ul_thp_l800",
            "avg_ul_thp_l1800": "ul_thp_l1800",
            "avg_ul_thp_l2300": "ul_thp_l2300",
            "avg_ul_thp_l2600": "ul_thp_l2600",
            "avg_ul_thp_l1800s": "ul_thp_l1800s",
        }
    )

    return [bh_kpi_df, lte_analysis_df]


def process_lte_bh_report(
    dump_path: str,
    bh_report_path: str,
    num_last_days: int,
    num_threshold_days: int,
    availability_threshold: float,
    prb_usage_threshold: float,
    prb_diff_between_cells_threshold: float,
    main_prb_to_use: str,
) -> dict:
    """
    Process LTE Busy Hour report and perform capacity analysis

    Args:
        bh_report_path: Path to BH report CSV file
        num_last_days: Number of last days for analysis
        num_threshold_days: Number of days for threshold calculation
        availability_threshold: Minimum required availability
        prb_usage_threshold: Maximum allowed PRB usage
        prb_diff_between_cells_threshold: Maximum allowed PRB usage difference between cells

    Returns:
        Dictionary containing analysis results and DataFrames
    """
    LteCapacity.final_results = None
    # lte_db_dfs = lte_database_for_capacity(dump_path)

    # Read BH report
    df = pd.read_csv(bh_report_path, delimiter=";")
    df = kpi_naming_cleaning(df)
    # print(df.columns)
    df = create_hourly_date(df)
    df = df[KPI_COLUMNS]
    pivoted_kpi_dfs = lte_bh_dfs_per_kpi(
        dump_path=dump_path,
        df=df,
        number_of_kpi_days=num_last_days,
        availability_threshold=availability_threshold,
        prb_usage_threshold=prb_usage_threshold,
        prb_diff_between_cells_threshold=prb_diff_between_cells_threshold,
        number_of_threshold_days=num_threshold_days,
        main_prb_to_use=main_prb_to_use,
    )

    # save_dataframe(pivoted_kpi_dfs, "LTE_BH_Report.csv")
    return pivoted_kpi_dfs