File size: 10,343 Bytes
263b2ce 4989fde 263b2ce 4989fde 9bd7cb4 263b2ce cd3fd31 263b2ce cd3fd31 263b2ce 9457c7e 4989fde 263b2ce cd3fd31 263b2ce 9457c7e 4989fde 263b2ce 9bd7cb4 263b2ce 9bd7cb4 263b2ce 449287c 263b2ce 4989fde 263b2ce 4989fde 263b2ce 485e98c 263b2ce 485e98c 263b2ce 4989fde cd3fd31 9457c7e cd3fd31 4989fde 263b2ce 4989fde cd3fd31 9457c7e 4989fde 263b2ce 449287c cd3fd31 c03a5ca 9457c7e c03a5ca 9457c7e c03a5ca 9457c7e c03a5ca 9457c7e 263b2ce 4989fde 9bd7cb4 4989fde cd3fd31 9457c7e cd3fd31 263b2ce 9bd7cb4 263b2ce 9bd7cb4 263b2ce 485e98c 263b2ce 485e98c 263b2ce 449287c 9bd7cb4 263b2ce 449287c 9bd7cb4 263b2ce 9bd7cb4 263b2ce 9bd7cb4 263b2ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import pandas as pd
from geopy.distance import geodesic
from queries.process_gsm import process_gsm_data
from queries.process_wcdma import process_wcdma_data
from utils.convert_to_excel import convert_dfs, save_dataframe
from utils.utils_vars import UtilsVars
ADCE_INITIAL_COLUMNS = [
"ID_BTS",
"lac_id",
"synchronized",
]
ADJS_INITIAL_COLUMNS = [
"ID_WCEL",
"lac_id",
]
BTS_SOURCE = [
"ID_BTS",
"ID_BCF",
"name",
"BCCH",
"BSIC",
"Longitude",
"Latitude",
]
BTS_TARGET = [
"lac_id",
"ID_BCF",
"name",
"BCCH",
"BSIC",
"Longitude",
"Latitude",
]
WCEL_SOURCE = [
"ID_WCEL",
"name",
"Longitude",
"Latitude",
]
WCEL_TARGET = [
"lac_id",
"name",
"Longitude",
"Latitude",
]
def check_symmetry(df: pd.DataFrame):
"""
Check for symmetric relationships in a dataframe of network neighbors.
For each source-target pair, checks if the reverse target-source pair exists.
Args:
df: pandas DataFrame with columns 'SOURCE_NAME' and 'TARGET_NAME'
Returns:
DataFrame with added 'SYMETRIQUE' column ('YES' if symmetric, 'NO' otherwise)
"""
# Create a set of all (source, target) pairs for fast lookup
pairs = set(zip(df["SOURCE_NAME"], df["TARGET_NAME"]))
# Check for each row if the reverse relationship exists
df["SYMETRIQUE"] = df.apply(
lambda row: (
"YES" if (row["TARGET_NAME"], row["SOURCE_NAME"]) in pairs else "NO"
),
axis=1,
)
return df
def process_neighbors_data(file_path: str):
"""
Process data from the specified file path.
Args:
file_path (str): The path to the file.
"""
# Read the specific sheet into a DataFrame
dfs = pd.read_excel(
file_path,
sheet_name=["ADCE", "ADJS", "ADJI", "ADJG", "ADJW", "BTS", "WCEL"],
engine="calamine",
skiprows=[0],
)
# # Process ADCE data
df_adce = dfs["ADCE"]
df_adce.columns = df_adce.columns.str.replace(r"[ ]", "", regex=True)
df_adce["ID_BTS"] = (
df_adce[["BSC", "BCF", "BTS"]].astype(str).apply("_".join, axis=1)
)
df_adce["lac_id"] = (
df_adce[["adjacentCellIdLac", "adjacentCellIdCI"]]
.astype(str)
.apply("_".join, axis=1)
)
df_adce["lac_id"] = df_adce["lac_id"].str.replace(".0", "")
df_adce = df_adce[ADCE_INITIAL_COLUMNS]
# Process BTS data
df_bts = process_gsm_data(file_path)
df_bts["lac_id"] = (
df_bts[["locationAreaIdLAC", "cellId"]]
.astype(str)
.apply("_".join, axis=1)
.str.replace(".0", "")
)
df_bts_source = df_bts[BTS_SOURCE]
df_bts_source = df_bts_source.rename(columns={"name": "SOURCE_NAME"})
df_bts_target = df_bts[BTS_TARGET]
df_bts_target = df_bts_target.rename(columns={"name": "TARGET_NAME"})
# #create final adce
df_adce_final = pd.merge(df_adce, df_bts_source, on="ID_BTS", how="left")
# Rename SOURCELongitude and Latitude columns
df_adce_final.rename(
columns={
"Longitude": "SOURCE_Longitude",
"Latitude": "SOURCE_Latitude",
"ID_BCF": "SOURCE_ID_BCF",
"BCCH": "SOURCE_BCCH",
"BSIC": "SOURCE_BSIC",
},
inplace=True,
)
df_adce_final = pd.merge(
df_adce_final, df_bts_target, on="lac_id", how="left"
).dropna()
df_adce_final.rename(
columns={
"ID_BTS": "SOURCE_ID",
"lac_id": "TARGET_LAC_ID",
"Longitude": "TARGET_Longitude",
"Latitude": "TARGET_Latitude",
"ID_BCF": "TARGET_ID_BCF",
"BCCH": "TARGET_BCCH",
"BSIC": "TARGET_BSIC",
},
inplace=True,
)
df_adce_final = check_symmetry(df_adce_final)
# Add column "Sync Comment"
# if SOURCE_ID_BCF = TARGET_ID_BCF and synchronized = 0 the "Need synchronized" else ""
df_adce_final["Sync Comment"] = df_adce_final.apply(
lambda row: (
"Need synchronized"
if row["SOURCE_ID_BCF"] == row["TARGET_ID_BCF"] and row["synchronized"] == 0
else ""
),
axis=1,
)
# Add column "Same BSIC" if SOURCE_BSIC = TARGET_BSIC THEN "Yes" else ""
df_adce_final["Same BSIC"] = df_adce_final.apply(
lambda row: "Yes" if row["SOURCE_BSIC"] == row["TARGET_BSIC"] else "",
axis=1,
)
# Add column "Same BCCH" if SOURCE_BCCH = TARGET_BCCH THEN "Yes" else ""
df_adce_final["Same BCCH"] = df_adce_final.apply(
lambda row: "Yes" if row["SOURCE_BCCH"] == row["TARGET_BCCH"] else "",
axis=1,
)
# create distance column
df_adce_final["distance_km"] = df_adce_final.apply(
lambda row: geodesic(
(row["SOURCE_Latitude"], row["SOURCE_Longitude"]),
(row["TARGET_Latitude"], row["TARGET_Longitude"]),
).kilometers,
axis=1,
)
# create final adce
df_adce_final = df_adce_final[
[
"SOURCE_ID",
"SOURCE_NAME",
"SOURCE_Longitude",
"SOURCE_Latitude",
"TARGET_LAC_ID",
"TARGET_NAME",
"TARGET_Longitude",
"TARGET_Latitude",
"SYMETRIQUE",
"synchronized",
"Sync Comment",
"Same BSIC",
"Same BCCH",
"distance_km",
]
]
# process ADJS data
df_adjs = dfs["ADJS"]
df_adjs.columns = df_adjs.columns.str.replace(r"[ ]", "", regex=True)
df_adjs["ID_WCEL"] = (
df_adjs[["RNC", "WBTS", "WCEL"]].astype(str).apply("_".join, axis=1)
)
df_adjs["lac_id"] = (
df_adjs[["AdjsLAC", "AdjsCI"]].astype(str).apply("_".join, axis=1)
)
df_adjs = df_adjs[ADJS_INITIAL_COLUMNS]
# process WCEL DATA
df_wcel = process_wcdma_data(file_path)
df_wcel["ID_WCEL"] = (
df_wcel[["RNC", "WBTS", "WCEL"]].astype(str).apply("_".join, axis=1)
)
df_wcel["lac_id"] = df_wcel[["LAC", "CId"]].astype(str).apply("_".join, axis=1)
df_wcel = df_wcel[["ID_WCEL", "lac_id", "name", "Longitude", "Latitude"]]
df_wcel_source = df_wcel[WCEL_SOURCE]
df_wcel_source = df_wcel_source.rename(columns={"name": "SOURCE_NAME"})
df_wcel_target = df_wcel[WCEL_TARGET]
df_wcel_target = df_wcel_target.rename(columns={"name": "TARGET_NAME"})
# create final adjs
df_adjs_final = pd.merge(df_adjs, df_wcel_source, on="ID_WCEL", how="left")
df_adjs_final = pd.merge(
df_adjs_final, df_wcel_target, on="lac_id", how="left"
).dropna()
df_adjs_final.rename(
columns={"ID_WCEL": "SOURCE_ID", "lac_id": "TARGET_LAC_ID"}, inplace=True
)
df_adjs_final = check_symmetry(df_adjs_final)
# create distance column
df_adjs_final["distance_km"] = df_adjs_final.apply(
lambda row: geodesic(
(row["Latitude_x"], row["Longitude_x"]),
(row["Latitude_y"], row["Longitude_y"]),
).kilometers,
axis=1,
)
# process ADJI DATA
df_adji = dfs["ADJI"]
df_adji.columns = df_adji.columns.str.replace(r"[ ]", "", regex=True)
df_adji["ID_WCEL"] = (
df_adji[["RNC", "WBTS", "WCEL"]].astype(str).apply("_".join, axis=1)
)
df_adji["lac_id"] = (
df_adji[["AdjiLAC", "AdjiCI"]].astype(str).apply("_".join, axis=1)
)
df_adji = df_adji[["ID_WCEL", "lac_id"]]
df_adji_final = pd.merge(df_adji, df_wcel_source, on="ID_WCEL", how="left")
df_adji_final = pd.merge(
df_adji_final, df_wcel_target, on="lac_id", how="left"
).dropna()
df_adji_final.rename(
columns={"ID_WCEL": "SOURCE_ID", "lac_id": "TARGET_LAC_ID"}, inplace=True
)
df_adji_final = check_symmetry(df_adji_final)
# create distance column
df_adji_final["distance_km"] = df_adji_final.apply(
lambda row: geodesic(
(row["Latitude_x"], row["Longitude_x"]),
(row["Latitude_y"], row["Longitude_y"]),
).kilometers,
axis=1,
)
# process ADJG DATA
df_adjg = dfs["ADJG"]
df_adjg.columns = df_adjg.columns.str.replace(r"[ ]", "", regex=True)
df_adjg["ID_WCEL"] = (
df_adjg[["RNC", "WBTS", "WCEL"]].astype(str).apply("_".join, axis=1)
)
df_adjg["lac_id"] = (
df_adjg[["AdjgLAC", "AdjgCI"]].astype(str).apply("_".join, axis=1)
)
df_adjg = df_adjg[["ID_WCEL", "lac_id"]]
df_adjg_final = pd.merge(df_adjg, df_wcel_source, on="ID_WCEL", how="left")
df_adjg_final = pd.merge(
df_adjg_final, df_bts_target, on="lac_id", how="left"
).dropna()
df_adjg_final.rename(
columns={"ID_WCEL": "SOURCE_ID", "lac_id": "TARGET_LAC_ID"}, inplace=True
)
# create distance column
df_adjg_final["distance_km"] = df_adjg_final.apply(
lambda row: geodesic(
(row["Latitude_x"], row["Longitude_x"]),
(row["Latitude_y"], row["Longitude_y"]),
).kilometers,
axis=1,
)
# process ADJW DATA
df_adjw = dfs["ADJW"]
df_adjw.columns = df_adjw.columns.str.replace(r"[ ]", "", regex=True)
df_adjw["ID_BTS"] = (
df_adjw[["BSC", "BCF", "BTS"]].astype(str).apply("_".join, axis=1)
)
df_adjw["lac_id"] = df_adjw[["lac", "AdjwCId"]].astype(str).apply("_".join, axis=1)
df_adjw = df_adjw[["ID_BTS", "lac_id"]]
df_adjw_final = pd.merge(df_adjw, df_bts_source, on="ID_BTS", how="left")
df_adjw_final = pd.merge(
df_adjw_final, df_wcel_target, on="lac_id", how="left"
).dropna()
df_adjw_final.rename(
columns={"ID_BTS": "SOURCE_ID", "lac_id": "TARGET_LAC_ID"}, inplace=True
)
df_adjw_final = check_symmetry(df_adjw_final)
# create distance column
df_adjw_final["distance_km"] = df_adjw_final.apply(
lambda row: geodesic(
(row["Latitude_x"], row["Longitude_x"]),
(row["Latitude_y"], row["Longitude_y"]),
).kilometers,
axis=1,
)
# save_dataframe(df_adjw_final, "ADJW")
return [df_adjw_final, df_adjg_final, df_adji_final, df_adjs_final, df_adce_final]
def process_neighbors_data_to_excel(file_path: str):
neighbors_dfs = process_neighbors_data(file_path)
UtilsVars.neighbors_database = convert_dfs(
neighbors_dfs, ["ADJW", "ADJG", "ADJI", "ADJS", "ADCE"]
)
|