File size: 5,462 Bytes
424caf8
 
56f36cc
424caf8
 
 
 
 
56f36cc
424caf8
 
 
 
002ceab
9d69630
 
 
424caf8
 
 
 
 
56f36cc
424caf8
 
 
 
002ceab
9d69630
 
 
424caf8
 
 
 
 
56f36cc
 
 
 
002ceab
9d69630
 
 
56f36cc
 
 
 
 
424caf8
 
 
002ceab
9d69630
 
 
424caf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f36cc
424caf8
 
56f36cc
424caf8
 
56f36cc
424caf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f36cc
424caf8
 
 
 
 
 
 
 
002ceab
9d69630
 
 
424caf8
 
 
 
 
 
56f36cc
424caf8
56f36cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import pandas as pd

from utils.utils_vars import SiteAnalysisData, UtilsVars

GSM_COLUMNS = [
    "code",
    "site_name",
    "site_config_band",
    "Region",
    "number_trx_per_site",
    "Longitude",
    "Latitude",
    "Hauteur",
    "City",
    "Adresse",
    "Commune",
    "Cercle",
]

WCDMA_COLUMNS = [
    "code",
    "site_name",
    "Region",
    "site_config_band",
    "Longitude",
    "Latitude",
    "Hauteur",
    "City",
    "Adresse",
    "Commune",
    "Cercle",
]
LTE_COLUMNS = [
    "code",
    "lnbts_name",
    "site_config_band",
    "Region",
    "Longitude",
    "Latitude",
    "Hauteur",
    "City",
    "Adresse",
    "Commune",
    "Cercle",
]

CODE_COLUMNS = [
    "code",
    "Region",
    "Longitude",
    "Latitude",
    "Hauteur",
    "City",
    "Adresse",
    "Commune",
    "Cercle",
]


def clean_bands(bands):
    if pd.isna(bands):
        return None
    parts = [p for p in bands.split("/") if p != "nan"]
    return "/".join(parts) if parts else None


def site_db():
    gsm_df: pd.DataFrame = UtilsVars.all_db_dfs[0]
    wcdma_df: pd.DataFrame = UtilsVars.all_db_dfs[3]
    lte_fdd_df: pd.DataFrame = UtilsVars.all_db_dfs[4]
    lte_tdd_df: pd.DataFrame = UtilsVars.all_db_dfs[5]

    gsm_df = gsm_df[GSM_COLUMNS]
    gsm_df = gsm_df.rename(
        columns={
            "code": "code",
            "site_name": "gsm_name",
            "site_config_band": "2G_Bands",
        }
    )
    gsm_df.drop_duplicates(subset=["code"], keep="first", inplace=True)

    wcdma_df = wcdma_df[WCDMA_COLUMNS]
    wcdma_df = wcdma_df.rename(
        columns={
            "code": "code",
            "site_name": "wcdma_name",
            "site_config_band": "3G_Bands",
        }
    )

    wcdma_df.drop_duplicates(subset=["code"], keep="first", inplace=True)

    lte_fdd_df = lte_fdd_df[LTE_COLUMNS]
    lte_tdd_df = lte_tdd_df[LTE_COLUMNS]
    lte_df: pd.DataFrame = pd.concat([lte_fdd_df, lte_tdd_df], ignore_index=False)

    lte_df = lte_df.rename(
        columns={
            "code": "code",
            "lnbts_name": "lte_name",
            "site_config_band": "4G_Bands",
        }
    )

    lte_df.drop_duplicates(subset=["code"], keep="first", inplace=True)

    ################################# CODE DATAFRAME#############################

    gsm_code_df: pd.DataFrame = (
        gsm_df[CODE_COLUMNS].copy() if gsm_df is not None else pd.DataFrame()
    )
    wcdma_code_df: pd.DataFrame = (
        wcdma_df[CODE_COLUMNS].copy() if wcdma_df is not None else pd.DataFrame()
    )
    lte_code_df: pd.DataFrame = (
        lte_df[CODE_COLUMNS].copy() if lte_df is not None else pd.DataFrame()
    )

    code_df: pd.DataFrame = pd.concat(
        [gsm_code_df, wcdma_code_df, lte_code_df], ignore_index=True
    )
    code_df.drop_duplicates(subset=["code"], keep="first", inplace=True)
    code_df.dropna(subset=["code"], inplace=True)
    # order by code
    code_df.sort_values(by=["code"], inplace=True)

    # print(code_df)
    # ################################# SITE DATAFRAME#############################
    gsm_df_final = gsm_df[
        [
            "code",
            "gsm_name",
            "2G_Bands",
            "number_trx_per_site",
        ]
    ].copy()
    wcdma_df_final = wcdma_df[["code", "wcdma_name", "3G_Bands"]].copy()
    lte_df_final = lte_df[["code", "lte_name", "4G_Bands"]].copy()

    site_df = pd.merge(code_df, gsm_df_final, how="left", on="code")
    site_df = pd.merge(site_df, wcdma_df_final, how="left", on="code")
    site_df = pd.merge(site_df, lte_df_final, how="left", on="code")
    # order by code
    site_df["site_name"] = (
        site_df["gsm_name"].fillna(site_df["wcdma_name"]).fillna(site_df["lte_name"])
    )

    site_df["all_bands"] = (
        (site_df[["2G_Bands", "3G_Bands", "4G_Bands"]])
        .astype(str)
        .apply("/".join, axis=1)
    )
    site_df["all_bands"] = site_df["all_bands"].apply(clean_bands)

    site_df = site_df[
        [
            "code",
            "site_name",
            "Region",
            "2G_Bands",
            "3G_Bands",
            "4G_Bands",
            "all_bands",
            "number_trx_per_site",
            "Longitude",
            "Latitude",
            "Hauteur",
            "City",
            "Adresse",
            "Commune",
            "Cercle",
        ]
    ]

    site_df.sort_values(by=["code"], inplace=True)

    UtilsVars.all_db_dfs.append(site_df)
    UtilsVars.all_db_dfs_names.append("SITE")

    ####################### SITE ANALYSIS ###################################################

    SiteAnalysisData.total_number_of_site = len(site_df["code"].unique())
    SiteAnalysisData.total_munber_of_gsm_site = site_df["2G_Bands"].notna().sum()
    SiteAnalysisData.total_number_of_wcdma_site = site_df["3G_Bands"].notna().sum()
    SiteAnalysisData.total_number_of_lte_site = site_df["4G_Bands"].notna().sum()

    SiteAnalysisData.gsm_bands_distribution = site_df["2G_Bands"].value_counts(
        ascending=True
    )
    SiteAnalysisData.wcdma_bands_distribution = site_df["3G_Bands"].value_counts(
        ascending=True
    )
    SiteAnalysisData.lte_bands_distribution = site_df["4G_Bands"].value_counts(
        ascending=True
    )
    SiteAnalysisData.all_bands_distribution = site_df["all_bands"].value_counts(
        ascending=True
    )
    SiteAnalysisData.number_of_trx_per_site_distribution = site_df[
        "number_trx_per_site"
    ].value_counts()