File size: 6,238 Bytes
939b332
 
bb3e08f
939b332
 
 
 
 
 
 
bb3e08f
939b332
09bd64e
424caf8
939b332
 
 
56d8047
 
 
 
 
 
 
09bd64e
424caf8
56d8047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53fa613
 
 
 
 
 
 
46a5af8
 
 
 
 
 
 
56d8047
 
 
 
939b332
 
 
 
 
 
 
 
 
56d8047
939b332
 
 
 
 
 
 
 
 
 
 
 
09bd64e
939b332
56d8047
 
 
bb3e08f
56d8047
 
6618c9f
939b332
bb3e08f
56d8047
46a5af8
 
 
424caf8
 
 
53fa613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a5af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53fa613
56d8047
 
ad021df
56d8047
 
 
 
424caf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56d8047
 
 
 
 
 
 
bb3e08f
56d8047
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import pandas as pd

from queries.process_small_bts import process_small_bts_data
from utils.convert_to_excel import convert_dfs, save_dataframe
from utils.utils_vars import UtilsVars

TRX_COLUMNS = [
    "ID_BTS",
    "trxRfPower",
    "BCCH",
    "TRX_TCH",
    "number_trx_per_cell",
    "number_trx_per_bcf",
    "number_trx_per_site",
]


TRX_BTS_COLUMNS = [
    "BSC",
    "BCF",
    "BTS",
    "TRX",
    "ID_BTS",
    "number_trx_per_cell",
    "number_trx_per_bcf",
    "number_trx_per_site",
    "code",
    "name",
    "adminState",
    "bbUnitSupportsEdge",
    "channel0Maio",
    "channel0Type",
    "channel1Maio",
    "channel1Type",
    "channel2Maio",
    "channel2Type",
    "channel3Maio",
    "channel3Type",
    "channel4Maio",
    "channel4Type",
    "channel5Maio",
    "channel5Type",
    "channel6Maio",
    "channel6Type",
    "channel7Maio",
    "channel7Type",
    "initialFrequency",
    "lapdLinkName",
    "lapdLinkNumber",
    "mcpaTrxNumber",
    "mcpaTrxPortId",
    "mcpaTrxPosition",
    "numberOfTrxRfPowerLevels",
    "optimumRxLevDL",
    "optimumRxLevUL",
    "preferredBcchMark",
    "trxAbilities",
    "trxFrequencyType",
    "trxRfPower",
    "tsc",
    "TCHs",
    "SDs",
    "BCCHs",
    "CCCHs",
    "CBCs",
    "TotalChannels",
    "Signal",
    "number_tch_per_cell",
    "number_sd_per_cell",
    "number_bcch_per_cell",
    "number_ccch_per_cell",
    "number_cbc_per_cell",
    "number_total_channels_per_cell",
    "number_signals_per_cell",
]


def process_brute_trx_data(file_path: str):
    """
    Process data from the specified file path.

    Args:
        file_path (str): The path to the file.
    """
    # Read the specific sheet into a DataFrame
    dfs = pd.read_excel(
        file_path,
        sheet_name=["TRX"],
        engine="calamine",
        skiprows=[0],
    )

    # Process TRX data
    df_trx = dfs["TRX"]
    df_trx.columns = df_trx.columns.str.replace(r"[ ]", "", regex=True)
    df_trx["ID_BTS"] = df_trx[["BSC", "BCF", "BTS"]].astype(str).apply("_".join, axis=1)
    df_trx["ID_BCF"] = df_trx[["BSC", "BCF"]].astype(str).apply("_".join, axis=1)
    df_trx["number_trx_per_cell"] = df_trx.groupby("ID_BTS")["ID_BTS"].transform(
        "count"
    )
    df_trx["number_trx_per_bcf"] = df_trx.groupby("ID_BCF")["ID_BCF"].transform("count")

    return df_trx


def process_trx_with_bts_name(file_path: str):

    df_gsm_trx = process_brute_trx_data(file_path=file_path).copy()
    df_gsm_trx.drop(columns=["name"], axis=1, inplace=True, errors="ignore")

    df_bts = process_small_bts_data(file_path=file_path)

    df_trx_bts_name: pd.DataFrame = pd.merge(
        df_gsm_trx, df_bts, on="ID_BTS", how="left"
    )
    df_trx_bts_name["number_trx_per_site"] = df_trx_bts_name.groupby("code")[
        "code"
    ].transform("count")
    # Filter columns strictly by names like "channelXType"
    channel_columns = [
        col
        for col in df_trx_bts_name.columns
        if col.startswith("channel") and col.endswith("Type")
    ]

    # TCHs	SDs	BCCH	CCCH	CBC	Total	Signal

    # Calculate "count of channels per TRX" for each row
    df_trx_bts_name["TCHs"] = df_trx_bts_name[channel_columns].apply(
        lambda row: (row == 2).sum(), axis=1
    )
    df_trx_bts_name["SDs"] = df_trx_bts_name[channel_columns].apply(
        lambda row: (row == 3).sum(), axis=1
    )

    df_trx_bts_name["BCCHs"] = df_trx_bts_name[channel_columns].apply(
        lambda row: (row == 4).sum(), axis=1
    )

    df_trx_bts_name["CCCHs"] = df_trx_bts_name[channel_columns].apply(
        lambda row: (row == 6).sum(), axis=1
    )

    df_trx_bts_name["CBCs"] = df_trx_bts_name[channel_columns].apply(
        lambda row: (row == 8).sum(), axis=1
    )

    # Total Channels =  TCHs + SDs + BCCHs + CCCHs + CBCs

    df_trx_bts_name["TotalChannels"] = (
        df_trx_bts_name["TCHs"]
        + df_trx_bts_name["SDs"]
        + df_trx_bts_name["BCCHs"]
        + df_trx_bts_name["CCCHs"]
        + df_trx_bts_name["CBCs"]
    )

    # Signal =  BCCHs + CCCHs + CBCs

    df_trx_bts_name["Signal"] = (
        df_trx_bts_name["BCCHs"] + df_trx_bts_name["CCCHs"] + df_trx_bts_name["CBCs"]
    )
    df_trx_bts_name["number_tch_per_cell"] = df_trx_bts_name.groupby("ID_BTS")[
        "TCHs"
    ].transform("sum")
    df_trx_bts_name["number_sd_per_cell"] = df_trx_bts_name.groupby("ID_BTS")[
        "SDs"
    ].transform("sum")
    df_trx_bts_name["number_bcch_per_cell"] = df_trx_bts_name.groupby("ID_BTS")[
        "BCCHs"
    ].transform("sum")
    df_trx_bts_name["number_ccch_per_cell"] = df_trx_bts_name.groupby("ID_BTS")[
        "CCCHs"
    ].transform("sum")
    df_trx_bts_name["number_cbc_per_cell"] = df_trx_bts_name.groupby("ID_BTS")[
        "CBCs"
    ].transform("sum")
    df_trx_bts_name["number_total_channels_per_cell"] = df_trx_bts_name.groupby(
        "ID_BTS"
    )["TotalChannels"].transform("sum")
    df_trx_bts_name["number_signals_per_cell"] = df_trx_bts_name.groupby("ID_BTS")[
        "Signal"
    ].transform("sum")

    df_trx_bts_name = df_trx_bts_name[TRX_BTS_COLUMNS]

    # UtilsVars.all_db_dfs.append(df_trx_bts_name)

    return df_trx_bts_name


def process_trx_data(file_path: str):

    df_gsm_trx = process_trx_with_bts_name(file_path=file_path).copy()

    bcch = df_gsm_trx[df_gsm_trx["channel0Type"] == 4]
    tch = df_gsm_trx[df_gsm_trx["channel0Type"] != 4][["ID_BTS", "initialFrequency"]]

    tch = tch.pivot_table(
        index="ID_BTS",
        values="initialFrequency",
        aggfunc=lambda x: ",".join(map(str, x)),
    )

    tch = tch.reset_index()

    # rename the columns
    tch.columns = ["ID_BTS", "TRX_TCH"]

    df_gsm_trx = pd.merge(bcch, tch, on="ID_BTS", how="left")
    # rename "initialFrequency" to "BCCH"
    df_gsm_trx = df_gsm_trx.rename(columns={"initialFrequency": "BCCH"})
    df_gsm_trx = df_gsm_trx[TRX_COLUMNS]

    return df_gsm_trx


def process_trx_with_bts_name_data_to_excel(file_path: str):
    """
    Process data from the specified file path and save it to a excel file.

    Args:
        file_path (str): The path to the file.
    """
    trx_bts_name = process_trx_with_bts_name(file_path)
    UtilsVars.final_trx_database = convert_dfs([trx_bts_name], ["TRX"])