File size: 9,424 Bytes
939b332
 
01dd930
939b332
 
cbbcd31
ef5e989
939b332
 
 
 
 
 
 
 
 
 
3615d9c
939b332
 
 
7209b6d
939b332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8d488f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
939b332
 
 
86110dd
01dd930
939b332
 
 
 
 
 
 
 
 
 
 
 
cbbcd31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
939b332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbf7879
 
 
 
3615d9c
939b332
 
 
 
 
 
 
 
 
 
 
 
86110dd
 
 
01dd930
 
 
 
 
939b332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5e989
01dd930
939b332
 
 
 
 
 
57fe85f
ccb28f5
 
939b332
57fe85f
 
 
939b332
 
57fe85f
 
 
01dd930
 
 
 
 
 
57fe85f
 
fbf7879
 
cbbcd31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbf7879
 
 
f8d488f
 
 
 
fbf7879
 
 
 
 
 
ccb28f5
 
fbf7879
f8d488f
 
 
fbf7879
 
 
 
ec8f588
 
c58bec1
 
 
 
fbf7879
 
4b6555c
fbf7879
 
 
 
 
 
 
4662aef
0c61244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c58bec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import pandas as pd

from utils.config_band import config_band
from utils.convert_to_excel import convert_dfs, save_dataframe
from utils.extract_code import extract_code_from_mrbts
from utils.kml_creator import generate_kml_from_df
from utils.utils_vars import UtilsVars, WcdmaAnalysisData, get_physical_db

WCEL_COLUMNS = [
    "ID_WBTS",
    "ID_WCEL",
    "RNC",
    "WBTS",
    "WCEL",
    "site_name",
    "name",
    "code",
    "Region",
    "AdminCellState",
    "CId",
    "LAC",
    "RAC",
    "UARFCN",
    "PriScrCode",
    "SAC",
    "maxCarrierPower",
    "PtxPrimaryCPICH",
    "CellRange",
    "CodeTreeOptTimer",
    "CodeTreeOptimisation",
    "CodeTreeUsage",
    "PRACHDelayRange",
    "PrxOffset",
    "PrxTarget",
    "PrxTargetMax",
    "PrxTargetPSMax",
    "PrxTargetPSMaxtHSRACH",
    "PtxCellMax",
    "PtxOffset",
    "PtxTarget",
    "SmartLTELayeringEnabled",
    "HSDPAFmcgIdentifier",
    "NrtFmcgIdentifier",
    "RtFmcgIdentifier",
    "RTWithHSDPAFmcgIdentifier",
    "HSDPAFmciIdentifier",
    "NrtFmciIdentifier",
    "RtFmciIdentifier",
    "RTWithHSDPAFmciIdentifier",
    "HSDPAFmcsIdentifier",
    "HSPAFmcsIdentifier",
    "NrtFmcsIdentifier",
    "RtFmcsIdentifier",
    "RTWithHSDPAFmcsIdentifier",
    "RTWithHSPAFmcsIdentifier",
    "Sintersearch",
    "SintersearchConn",
    "Sintrasearch",
    "SintrasearchConn",
    "Ssearch_RATConn",
    "TreselectionFACH",
    "TreselectionPCH",
    "SectorID",
    "Code_Sector",
    "code_wcel",
    "porteuse",
    "band",
]

WBTS_COLUMNS = [
    "ID_WBTS",
    "site_name",
]

WNCEL_COLUMNS = [
    "code_wcel",
    "maxCarrierPower",
]

WCDMA_KML_COLUMNS = [
    "code",
    "name",
    "Longitude",
    "Latitude",
    "Azimut",
    "Hauteur",
    "LAC",
    "CId",
    "LAC",
    "UARFCN",
    "PriScrCode",
    "band",
]


def process_wcdma_data(file_path: str):
    """
    Process data from the specified file path.

    Args:
        file_path (str): The path to the file.
    """
    # Read the specific sheet into a DataFrame
    # df_wcel = pd.read_excel(
    #     file_path, sheet_name="WCEL", engine="calamine", skiprows=[0]
    # )
    # df_wbts = pd.read_excel(
    #     file_path, sheet_name="WBTS", engine="calamine", skiprows=[0]
    # )
    # df_wncel = pd.read_excel(
    #     file_path, sheet_name="WNCEL", engine="calamine", skiprows=[0]
    # )

    dfs = pd.read_excel(
        file_path,
        sheet_name=["WCEL", "WBTS", "WNCEL"],
        engine="calamine",
        skiprows=[0],
    )

    # Process BTS data
    df_wcel = dfs["WCEL"]
    df_wcel.columns = df_wcel.columns.str.replace(r"[ ]", "", regex=True)
    df_wcel["code"] = df_wcel["name"].str.split("_").str[0]
    df_wcel["code"] = (
        pd.to_numeric(df_wcel["code"], errors="coerce").fillna(0).astype(int)
    )
    df_wcel["Region"] = df_wcel["name"].str.split("_").str[1]
    df_wcel["ID_WCEL"] = (
        df_wcel[["RNC", "WBTS", "WCEL"]].astype(str).apply("_".join, axis=1)
    )

    df_wcel["ID_WBTS"] = df_wcel[["RNC", "WBTS"]].astype(str).apply("_".join, axis=1)
    df_wcel["Code_Sector"] = (
        df_wcel[["code", "SectorID"]].astype(str).apply("_".join, axis=1)
    )
    df_wcel["code_wcel"] = df_wcel[["code", "WCEL"]].astype(str).apply("_".join, axis=1)

    df_wcel["Code_Sector"] = df_wcel["Code_Sector"].str.replace(".0", "")

    df_wcel["porteuse"] = (
        df_wcel["UARFCN"].map(UtilsVars.porteuse_mapping).fillna("not found")
    )
    df_wcel["band"] = df_wcel["UARFCN"].map(UtilsVars.wcdma_band).fillna("not found")

    # create config_band dataframe
    df_band = config_band(df_wcel)

    # Process WBTS data
    df_wbts = dfs["WBTS"]
    df_wbts.columns = df_wbts.columns.str.replace(r"[ ]", "", regex=True)
    df_wbts["ID_WBTS"] = df_wbts[["RNC", "WBTS"]].astype(str).apply("_".join, axis=1)
    df_wbts.rename(columns={"name": "site_name"}, inplace=True)
    df_wbts = df_wbts[WBTS_COLUMNS]

    # Process WNCEL data
    df_wncel = dfs["WNCEL"]
    df_wncel.columns = df_wncel.columns.str.replace(r"[ ]", "", regex=True)
    df_wncel["CODE"] = df_wncel["MRBTS"].apply(extract_code_from_mrbts)
    df_wncel["code_wcel"] = (
        df_wncel[["CODE", "WNCEL"]].astype(str).apply("_".join, axis=1)
    )
    df_wncel = df_wncel[WNCEL_COLUMNS]

    # Merge dataframes
    df_wcel_bcf = pd.merge(df_wcel, df_wbts, on="ID_WBTS", how="left")

    df_3g = pd.merge(df_wcel_bcf, df_wncel, on="code_wcel", how="left")

    df_3g = df_3g[WCEL_COLUMNS]

    df_physical_db = get_physical_db()
    df_3g = pd.merge(df_3g, df_band, on="code", how="left")
    df_3g = pd.merge(df_3g, df_physical_db, on="Code_Sector", how="left")
    # Save dataframes
    # save_dataframe(df_wcel, "wcel")
    # save_dataframe(df_wcel_bcf, "wbts")
    # save_dataframe(df_wncel, "wncel")
    # df_3g = save_dataframe(df_3g, "3G")
    UtilsVars.all_db_dfs.append(df_3g)
    UtilsVars.wcdma_dfs.append(df_3g)
    UtilsVars.all_db_dfs_names.append("WCDMA")

    # UtilsVars.final_wcdma_database = convert_dfs([df_3g], ["WCDMA"])
    return df_3g
    # UtilsVars.final_wcdma_database = [df_3g]

    # BTS.process_ok = "Done"


def process_wcdma_data_to_excel(file_path: str):
    """
    Process WCDMA data from the specified file path and convert it to Excel format

    Args:
        file_path (str): The path to the file.
    """
    wcdma_dfs = process_wcdma_data(file_path)
    UtilsVars.final_wcdma_database = convert_dfs([wcdma_dfs], ["WCDMA"])


############################# KML CREATION #################################


def process_wcdma_data_to_kml(file_path: str):
    """
    Process WCDMA data from the specified file path and convert it to KML format

    Args:
        file_path (str): The path to the file.
    """
    wcdma_kml_df = process_wcdma_data(file_path)
    wcdma_kml_df = wcdma_kml_df[WCDMA_KML_COLUMNS]
    # Add colors column base on "band" column
    wcdma_kml_df["color"] = wcdma_kml_df["band"].map(UtilsVars.color_mapping)
    # Add size column base on "band" column
    wcdma_kml_df["size"] = wcdma_kml_df["band"].map(UtilsVars.size_mapping)
    # Remove empty rows
    wcdma_kml_df = wcdma_kml_df.dropna(subset=["Longitude", "Latitude", "Azimut"])
    # Generate kml
    UtilsVars.wcdma_kml_file = generate_kml_from_df(wcdma_kml_df)


############################ANALYTICSS AND STATISTICS############################


def wcdma_analaysis(
    filepath: str,
    # region_list: list
):
    """
    Process WCDMA data from the specified file path and convert it to Excel format

    Args:
        filepath (str): The path to the file.
    """
    # wcdma_df = process_wcdma_data(filepath)
    wcdma_df: pd.DataFrame = UtilsVars.wcdma_dfs[0]

    # filter per list of regions
    # wcdma_df = wcdma_df.loc[wcdma_df["Region"].isin(region_list)]

    # df to count number of site per rnc
    df_site_per_rnc = wcdma_df[["RNC", "code"]]
    df_site_per_rnc = df_site_per_rnc.drop_duplicates(subset=["code"], keep="first")

    df_site_per_lac = wcdma_df.loc[:, ["RNC", "LAC", "code"]].copy()
    df_site_per_lac.loc[:, "code_lac"] = (
        df_site_per_lac["code"].astype(str) + "_" + df_site_per_lac["LAC"].astype(str)
    )
    df_site_per_lac = df_site_per_lac.drop_duplicates(subset=["code_lac"], keep="first")

    WcdmaAnalysisData.total_number_of_rnc = wcdma_df["RNC"].nunique()
    WcdmaAnalysisData.total_number_of_wcel = wcdma_df["ID_WCEL"].nunique()
    WcdmaAnalysisData.number_of_site = len(wcdma_df["site_name"].dropna().unique())
    WcdmaAnalysisData.number_of_site_per_rnc = df_site_per_rnc["RNC"].value_counts()
    WcdmaAnalysisData.number_of_cell_per_rnc = wcdma_df["RNC"].value_counts()
    WcdmaAnalysisData.number_of_empty_wbts_name = wcdma_df["site_name"].isnull().sum()
    WcdmaAnalysisData.number_of_empty_wcel_name = wcdma_df["name"].isnull().sum()
    WcdmaAnalysisData.wcel_administate_distribution = wcdma_df[
        "AdminCellState"
    ].value_counts()
    WcdmaAnalysisData.psc_distribution = wcdma_df["PriScrCode"].value_counts()
    # Manage Cells count per LAC and RNC
    # Pivot RNC and LAC
    WcdmaAnalysisData.number_of_cell_per_lac = (
        wcdma_df.groupby(["RNC", "LAC"]).size().reset_index(name="count")
    )
    # Rename columns
    WcdmaAnalysisData.number_of_cell_per_lac = (
        WcdmaAnalysisData.number_of_cell_per_lac.rename(
            columns={"RNC": "RNC", "LAC": "LAC", "count": "LAC_Count"}
        )
    )
    # Add "RNC_" and "LAC_" prefix
    WcdmaAnalysisData.number_of_cell_per_lac["RNC"] = (
        "RNC_" + WcdmaAnalysisData.number_of_cell_per_lac["RNC"].astype(str)
    )
    WcdmaAnalysisData.number_of_cell_per_lac["LAC"] = (
        "LAC_" + WcdmaAnalysisData.number_of_cell_per_lac["LAC"].astype(str)
    )

    ##################### Number of site per LAC
    WcdmaAnalysisData.number_of_site_per_lac = (
        df_site_per_lac.groupby(["RNC", "LAC"]).size().reset_index(name="count")
    )
    # Rename columns
    WcdmaAnalysisData.number_of_site_per_lac = (
        WcdmaAnalysisData.number_of_site_per_lac.rename(
            columns={"RNC": "RNC", "LAC": "LAC", "count": "Site_Count"}
        )
    )
    # Add "RNC_" and "LAC_" prefix
    WcdmaAnalysisData.number_of_site_per_lac["RNC"] = (
        "RNC_" + WcdmaAnalysisData.number_of_site_per_lac["RNC"].astype(str)
    )
    WcdmaAnalysisData.number_of_site_per_lac["LAC"] = (
        "LAC_" + WcdmaAnalysisData.number_of_site_per_lac["LAC"].astype(str)
    )