File size: 9,424 Bytes
939b332 01dd930 939b332 cbbcd31 ef5e989 939b332 3615d9c 939b332 7209b6d 939b332 f8d488f 939b332 86110dd 01dd930 939b332 cbbcd31 939b332 fbf7879 3615d9c 939b332 86110dd 01dd930 939b332 ef5e989 01dd930 939b332 57fe85f ccb28f5 939b332 57fe85f 939b332 57fe85f 01dd930 57fe85f fbf7879 cbbcd31 fbf7879 f8d488f fbf7879 ccb28f5 fbf7879 f8d488f fbf7879 ec8f588 c58bec1 fbf7879 4b6555c fbf7879 4662aef 0c61244 c58bec1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import pandas as pd
from utils.config_band import config_band
from utils.convert_to_excel import convert_dfs, save_dataframe
from utils.extract_code import extract_code_from_mrbts
from utils.kml_creator import generate_kml_from_df
from utils.utils_vars import UtilsVars, WcdmaAnalysisData, get_physical_db
WCEL_COLUMNS = [
"ID_WBTS",
"ID_WCEL",
"RNC",
"WBTS",
"WCEL",
"site_name",
"name",
"code",
"Region",
"AdminCellState",
"CId",
"LAC",
"RAC",
"UARFCN",
"PriScrCode",
"SAC",
"maxCarrierPower",
"PtxPrimaryCPICH",
"CellRange",
"CodeTreeOptTimer",
"CodeTreeOptimisation",
"CodeTreeUsage",
"PRACHDelayRange",
"PrxOffset",
"PrxTarget",
"PrxTargetMax",
"PrxTargetPSMax",
"PrxTargetPSMaxtHSRACH",
"PtxCellMax",
"PtxOffset",
"PtxTarget",
"SmartLTELayeringEnabled",
"HSDPAFmcgIdentifier",
"NrtFmcgIdentifier",
"RtFmcgIdentifier",
"RTWithHSDPAFmcgIdentifier",
"HSDPAFmciIdentifier",
"NrtFmciIdentifier",
"RtFmciIdentifier",
"RTWithHSDPAFmciIdentifier",
"HSDPAFmcsIdentifier",
"HSPAFmcsIdentifier",
"NrtFmcsIdentifier",
"RtFmcsIdentifier",
"RTWithHSDPAFmcsIdentifier",
"RTWithHSPAFmcsIdentifier",
"Sintersearch",
"SintersearchConn",
"Sintrasearch",
"SintrasearchConn",
"Ssearch_RATConn",
"TreselectionFACH",
"TreselectionPCH",
"SectorID",
"Code_Sector",
"code_wcel",
"porteuse",
"band",
]
WBTS_COLUMNS = [
"ID_WBTS",
"site_name",
]
WNCEL_COLUMNS = [
"code_wcel",
"maxCarrierPower",
]
WCDMA_KML_COLUMNS = [
"code",
"name",
"Longitude",
"Latitude",
"Azimut",
"Hauteur",
"LAC",
"CId",
"LAC",
"UARFCN",
"PriScrCode",
"band",
]
def process_wcdma_data(file_path: str):
"""
Process data from the specified file path.
Args:
file_path (str): The path to the file.
"""
# Read the specific sheet into a DataFrame
# df_wcel = pd.read_excel(
# file_path, sheet_name="WCEL", engine="calamine", skiprows=[0]
# )
# df_wbts = pd.read_excel(
# file_path, sheet_name="WBTS", engine="calamine", skiprows=[0]
# )
# df_wncel = pd.read_excel(
# file_path, sheet_name="WNCEL", engine="calamine", skiprows=[0]
# )
dfs = pd.read_excel(
file_path,
sheet_name=["WCEL", "WBTS", "WNCEL"],
engine="calamine",
skiprows=[0],
)
# Process BTS data
df_wcel = dfs["WCEL"]
df_wcel.columns = df_wcel.columns.str.replace(r"[ ]", "", regex=True)
df_wcel["code"] = df_wcel["name"].str.split("_").str[0]
df_wcel["code"] = (
pd.to_numeric(df_wcel["code"], errors="coerce").fillna(0).astype(int)
)
df_wcel["Region"] = df_wcel["name"].str.split("_").str[1]
df_wcel["ID_WCEL"] = (
df_wcel[["RNC", "WBTS", "WCEL"]].astype(str).apply("_".join, axis=1)
)
df_wcel["ID_WBTS"] = df_wcel[["RNC", "WBTS"]].astype(str).apply("_".join, axis=1)
df_wcel["Code_Sector"] = (
df_wcel[["code", "SectorID"]].astype(str).apply("_".join, axis=1)
)
df_wcel["code_wcel"] = df_wcel[["code", "WCEL"]].astype(str).apply("_".join, axis=1)
df_wcel["Code_Sector"] = df_wcel["Code_Sector"].str.replace(".0", "")
df_wcel["porteuse"] = (
df_wcel["UARFCN"].map(UtilsVars.porteuse_mapping).fillna("not found")
)
df_wcel["band"] = df_wcel["UARFCN"].map(UtilsVars.wcdma_band).fillna("not found")
# create config_band dataframe
df_band = config_band(df_wcel)
# Process WBTS data
df_wbts = dfs["WBTS"]
df_wbts.columns = df_wbts.columns.str.replace(r"[ ]", "", regex=True)
df_wbts["ID_WBTS"] = df_wbts[["RNC", "WBTS"]].astype(str).apply("_".join, axis=1)
df_wbts.rename(columns={"name": "site_name"}, inplace=True)
df_wbts = df_wbts[WBTS_COLUMNS]
# Process WNCEL data
df_wncel = dfs["WNCEL"]
df_wncel.columns = df_wncel.columns.str.replace(r"[ ]", "", regex=True)
df_wncel["CODE"] = df_wncel["MRBTS"].apply(extract_code_from_mrbts)
df_wncel["code_wcel"] = (
df_wncel[["CODE", "WNCEL"]].astype(str).apply("_".join, axis=1)
)
df_wncel = df_wncel[WNCEL_COLUMNS]
# Merge dataframes
df_wcel_bcf = pd.merge(df_wcel, df_wbts, on="ID_WBTS", how="left")
df_3g = pd.merge(df_wcel_bcf, df_wncel, on="code_wcel", how="left")
df_3g = df_3g[WCEL_COLUMNS]
df_physical_db = get_physical_db()
df_3g = pd.merge(df_3g, df_band, on="code", how="left")
df_3g = pd.merge(df_3g, df_physical_db, on="Code_Sector", how="left")
# Save dataframes
# save_dataframe(df_wcel, "wcel")
# save_dataframe(df_wcel_bcf, "wbts")
# save_dataframe(df_wncel, "wncel")
# df_3g = save_dataframe(df_3g, "3G")
UtilsVars.all_db_dfs.append(df_3g)
UtilsVars.wcdma_dfs.append(df_3g)
UtilsVars.all_db_dfs_names.append("WCDMA")
# UtilsVars.final_wcdma_database = convert_dfs([df_3g], ["WCDMA"])
return df_3g
# UtilsVars.final_wcdma_database = [df_3g]
# BTS.process_ok = "Done"
def process_wcdma_data_to_excel(file_path: str):
"""
Process WCDMA data from the specified file path and convert it to Excel format
Args:
file_path (str): The path to the file.
"""
wcdma_dfs = process_wcdma_data(file_path)
UtilsVars.final_wcdma_database = convert_dfs([wcdma_dfs], ["WCDMA"])
############################# KML CREATION #################################
def process_wcdma_data_to_kml(file_path: str):
"""
Process WCDMA data from the specified file path and convert it to KML format
Args:
file_path (str): The path to the file.
"""
wcdma_kml_df = process_wcdma_data(file_path)
wcdma_kml_df = wcdma_kml_df[WCDMA_KML_COLUMNS]
# Add colors column base on "band" column
wcdma_kml_df["color"] = wcdma_kml_df["band"].map(UtilsVars.color_mapping)
# Add size column base on "band" column
wcdma_kml_df["size"] = wcdma_kml_df["band"].map(UtilsVars.size_mapping)
# Remove empty rows
wcdma_kml_df = wcdma_kml_df.dropna(subset=["Longitude", "Latitude", "Azimut"])
# Generate kml
UtilsVars.wcdma_kml_file = generate_kml_from_df(wcdma_kml_df)
############################ANALYTICSS AND STATISTICS############################
def wcdma_analaysis(
filepath: str,
# region_list: list
):
"""
Process WCDMA data from the specified file path and convert it to Excel format
Args:
filepath (str): The path to the file.
"""
# wcdma_df = process_wcdma_data(filepath)
wcdma_df: pd.DataFrame = UtilsVars.wcdma_dfs[0]
# filter per list of regions
# wcdma_df = wcdma_df.loc[wcdma_df["Region"].isin(region_list)]
# df to count number of site per rnc
df_site_per_rnc = wcdma_df[["RNC", "code"]]
df_site_per_rnc = df_site_per_rnc.drop_duplicates(subset=["code"], keep="first")
df_site_per_lac = wcdma_df.loc[:, ["RNC", "LAC", "code"]].copy()
df_site_per_lac.loc[:, "code_lac"] = (
df_site_per_lac["code"].astype(str) + "_" + df_site_per_lac["LAC"].astype(str)
)
df_site_per_lac = df_site_per_lac.drop_duplicates(subset=["code_lac"], keep="first")
WcdmaAnalysisData.total_number_of_rnc = wcdma_df["RNC"].nunique()
WcdmaAnalysisData.total_number_of_wcel = wcdma_df["ID_WCEL"].nunique()
WcdmaAnalysisData.number_of_site = len(wcdma_df["site_name"].dropna().unique())
WcdmaAnalysisData.number_of_site_per_rnc = df_site_per_rnc["RNC"].value_counts()
WcdmaAnalysisData.number_of_cell_per_rnc = wcdma_df["RNC"].value_counts()
WcdmaAnalysisData.number_of_empty_wbts_name = wcdma_df["site_name"].isnull().sum()
WcdmaAnalysisData.number_of_empty_wcel_name = wcdma_df["name"].isnull().sum()
WcdmaAnalysisData.wcel_administate_distribution = wcdma_df[
"AdminCellState"
].value_counts()
WcdmaAnalysisData.psc_distribution = wcdma_df["PriScrCode"].value_counts()
# Manage Cells count per LAC and RNC
# Pivot RNC and LAC
WcdmaAnalysisData.number_of_cell_per_lac = (
wcdma_df.groupby(["RNC", "LAC"]).size().reset_index(name="count")
)
# Rename columns
WcdmaAnalysisData.number_of_cell_per_lac = (
WcdmaAnalysisData.number_of_cell_per_lac.rename(
columns={"RNC": "RNC", "LAC": "LAC", "count": "LAC_Count"}
)
)
# Add "RNC_" and "LAC_" prefix
WcdmaAnalysisData.number_of_cell_per_lac["RNC"] = (
"RNC_" + WcdmaAnalysisData.number_of_cell_per_lac["RNC"].astype(str)
)
WcdmaAnalysisData.number_of_cell_per_lac["LAC"] = (
"LAC_" + WcdmaAnalysisData.number_of_cell_per_lac["LAC"].astype(str)
)
##################### Number of site per LAC
WcdmaAnalysisData.number_of_site_per_lac = (
df_site_per_lac.groupby(["RNC", "LAC"]).size().reset_index(name="count")
)
# Rename columns
WcdmaAnalysisData.number_of_site_per_lac = (
WcdmaAnalysisData.number_of_site_per_lac.rename(
columns={"RNC": "RNC", "LAC": "LAC", "count": "Site_Count"}
)
)
# Add "RNC_" and "LAC_" prefix
WcdmaAnalysisData.number_of_site_per_lac["RNC"] = (
"RNC_" + WcdmaAnalysisData.number_of_site_per_lac["RNC"].astype(str)
)
WcdmaAnalysisData.number_of_site_per_lac["LAC"] = (
"LAC_" + WcdmaAnalysisData.number_of_site_per_lac["LAC"].astype(str)
)
|