|
from io import BytesIO |
|
|
|
import pandas as pd |
|
import plotly.express as px |
|
import streamlit as st |
|
|
|
from utils.utils_vars import get_physical_db |
|
|
|
st.title("LTE Cell Traffic Drop Detection") |
|
doc_col, image_col = st.columns(2) |
|
|
|
with doc_col: |
|
st.write( |
|
""" |
|
This App allow you to detect cells with significant traffic drop in LTE Network. |
|
- Upload traffic CSV file |
|
- Select number of last days for drop analysis |
|
- Select loss percentage threshold |
|
""" |
|
) |
|
|
|
with image_col: |
|
st.image("./assets/traffic_drop.png", width=250) |
|
|
|
uploaded_file = st.file_uploader("Upload traffic CSV file", type=["csv"]) |
|
|
|
if uploaded_file: |
|
df = pd.read_csv(uploaded_file, sep=";") |
|
|
|
df["PERIOD_START_TIME"] = pd.to_datetime(df["PERIOD_START_TIME"], format="%m.%d.%Y") |
|
df.sort_values("PERIOD_START_TIME", inplace=True) |
|
|
|
df["Total_Traffic"] = ( |
|
df["4G/LTE DL Traffic Volume (GBytes)"] |
|
+ df["4G/LTE UL Traffic Volume (GBytes)"] |
|
) |
|
|
|
unique_dates = sorted(df["PERIOD_START_TIME"].unique()) |
|
last_n_days = st.slider( |
|
"Select number of last days for drop analysis", |
|
1, |
|
min(10, len(unique_dates) - 1), |
|
2, |
|
) |
|
treshold_percent = st.slider("Loss percentage threshold", 10, 100, 50) |
|
|
|
last_days = unique_dates[-last_n_days:] |
|
long_term_days = unique_dates[:-last_n_days] |
|
|
|
last_df = df[df["PERIOD_START_TIME"].isin(last_days)] |
|
long_term_df = df[df["PERIOD_START_TIME"].isin(long_term_days)] |
|
|
|
avg_last = last_df.groupby("LNCEL name")["Total_Traffic"].mean() |
|
avg_long = long_term_df.groupby("LNCEL name")["Total_Traffic"].mean() |
|
|
|
result = pd.DataFrame( |
|
{"avg_long_term": avg_long, "avg_last_days": avg_last} |
|
).dropna() |
|
|
|
result["drop_%"] = ( |
|
(result["avg_long_term"] - result["avg_last_days"]) |
|
/ result["avg_long_term"] |
|
* 100 |
|
) |
|
result = result[result["drop_%"] >= treshold_percent] |
|
result = result.reset_index() |
|
|
|
st.subheader("Cells with Significant Traffic Drop") |
|
st.dataframe(result) |
|
|
|
def convert_df(df: pd.DataFrame) -> bytes: |
|
output = BytesIO() |
|
df.to_excel(output, index=False) |
|
processed_data = output.getvalue() |
|
return processed_data |
|
|
|
if not result.empty: |
|
st.download_button( |
|
label="📥 Download affected cells", |
|
data=convert_df(result), |
|
file_name="traffic_drop_cells.xlsx", |
|
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", |
|
type="primary", |
|
) |
|
|
|
@st.fragment |
|
def trend_plot(): |
|
st.subheader("Traffic Trend Plot") |
|
default_cell = result["LNCEL name"].iloc[0] |
|
selected_cell = st.selectbox( |
|
"Select cell to plot", |
|
result["LNCEL name"].unique(), |
|
index=result["LNCEL name"].unique().tolist().index(default_cell), |
|
) |
|
|
|
if selected_cell: |
|
trend_df = df[df["LNCEL name"].eq(selected_cell)] |
|
fig = px.line( |
|
trend_df, |
|
x="PERIOD_START_TIME", |
|
y="Total_Traffic", |
|
title="Traffic Trends", |
|
markers=True, |
|
height=700, |
|
) |
|
|
|
if selected_cell in avg_long: |
|
fig.add_shape( |
|
type="line", |
|
x0=trend_df["PERIOD_START_TIME"].min(), |
|
x1=trend_df["PERIOD_START_TIME"].max(), |
|
y0=avg_long[selected_cell], |
|
y1=avg_long[selected_cell], |
|
line=dict(color="blue", dash="dot"), |
|
name=f"{selected_cell} Long Term Avg", |
|
) |
|
|
|
if last_days: |
|
start_date = pd.to_datetime(str(last_days[0])) |
|
fig.add_shape( |
|
type="line", |
|
x0=start_date, |
|
x1=start_date, |
|
y0=0, |
|
y1=trend_df["Total_Traffic"].max(), |
|
line=dict(color="red", dash="dash"), |
|
name="Start of Last Days", |
|
) |
|
|
|
st.plotly_chart(fig, use_container_width=True) |
|
|
|
trend_plot() |
|
|
|
st.subheader("Map of Affected Cells (Bubble Size = Drop %)") |
|
result_map = result.copy() |
|
physical_db = get_physical_db() |
|
|
|
|
|
physical_db["code"] = physical_db["Code_Sector"].str.split("_").str[0] |
|
|
|
result_map["code"] = result_map["LNCEL name"].str.split("_").str[0] |
|
|
|
result_map = pd.merge(result_map, physical_db, on="code", how="left") |
|
|
|
result_map["Latitude"] = result_map["Latitude"] |
|
result_map["Longitude"] = result_map["Longitude"] |
|
fig_map = px.scatter_map( |
|
result_map, |
|
lat="Latitude", |
|
lon="Longitude", |
|
size="drop_%", |
|
color=result_map["drop_%"], |
|
color_continuous_scale="reds", |
|
hover_name="LNCEL name", |
|
zoom=6, |
|
height=600, |
|
title="Dropped Cells Map", |
|
map_style="satellite-streets", |
|
) |
|
|
|
st.plotly_chart(fig_map, use_container_width=True) |
|
|