db_query / process_kpi /process_gsm_capacity.py
DavMelchi's picture
fixe muti-point showing in gsm app in starup issues
5a8534e
import numpy as np
import pandas as pd
from queries.process_gsm import combined_gsm_database
from utils.check_sheet_exist import execute_checks_sheets_exist
from utils.convert_to_excel import convert_dfs, save_dataframe
from utils.kpi_analysis_utils import (
GsmAnalysis,
GsmCapacity,
analyze_sdcch_call_blocking,
analyze_tch_abis_fails,
analyze_tch_call_blocking,
cell_availability_analysis,
combine_comments,
create_daily_date,
create_dfs_per_kpi,
create_hourly_date,
kpi_naming_cleaning,
)
from utils.utils_functions import calculate_distances
GSM_ANALYSIS_COLUMNS = [
"ID_BTS",
"site_name",
"name",
"BSC",
"BCF",
"BTS",
"code",
"Region",
"adminState",
"frequencyBandInUse",
"cellId",
"band",
"site_config_band",
"trxRfPower",
"BCCH",
"Longitude",
"Latitude",
"TRX_TCH",
"MAL_TCH",
"amrSegLoadDepTchRateLower",
"amrSegLoadDepTchRateUpper",
"btsSpLoadDepTchRateLower",
"btsSpLoadDepTchRateUpper",
"amrWbFrCodecModeSet",
"dedicatedGPRScapacity",
"defaultGPRScapacity",
"number_trx_per_cell",
"number_trx_per_bcf",
"number_tch_per_cell",
"number_sd_per_cell",
"number_bcch_per_cell",
"number_ccch_per_cell",
"number_cbc_per_cell",
"number_total_channels_per_cell",
"number_signals_per_cell",
"hf_rate_coef",
"GPRS",
"TCH Actual HR%",
"Offered Traffic BH",
"Max_Traffic BH",
"Avg_Traffic BH",
"TCH UTILIZATION (@Max Traffic)",
"Tch utilization comments",
"ErlabngB_value",
"Target FR CHs",
"Target HR CHs",
"Target TCHs",
"Target TRXs",
"Number of required TRXs",
"max_tch_call_blocking_bh",
"avg_tch_call_blocking_bh",
"number_of_days_with_tch_blocking_exceeded_bh",
"tch_call_blocking_bh_comment",
"max_sdcch_real_blocking_bh",
"avg_sdcch_real_blocking_bh",
"number_of_days_with_sdcch_blocking_exceeded_bh",
"sdcch_real_blocking_bh_comment",
"Average_cell_availability_bh",
"number_of_days_exceeding_availability_threshold_bh",
"availability_comment_bh",
"max_tch_abis_fail_bh",
"avg_tch_abis_fail_bh",
"number_of_days_with_tch_abis_fail_exceeded_bh",
"tch_abis_fail_bh_comment",
"Average_cell_availability_daily",
"number_of_days_exceeding_availability_threshold_daily",
"availability_comment_daily",
"max_tch_abis_fail_daily",
"avg_tch_abis_fail_daily",
"number_of_days_with_tch_abis_fail_exceeded_daily",
"tch_abis_fail_daily_comment",
"BH Congestion status",
"operational_comment",
"Final comment",
"Final comment summary",
]
OPERATIONAL_NEIGHBOURS_COLUMNS = [
"ID_BTS",
"name",
"operational_comment",
"BH Congestion status",
"Longitude",
"Latitude",
]
GSM_COLUMNS = [
"ID_BTS",
"site_name",
"name",
"BSC",
"BCF",
"BTS",
"code",
"Region",
"adminState",
"frequencyBandInUse",
"amrSegLoadDepTchRateLower",
"amrSegLoadDepTchRateUpper",
"btsSpLoadDepTchRateLower",
"btsSpLoadDepTchRateUpper",
"amrWbFrCodecModeSet",
"dedicatedGPRScapacity",
"defaultGPRScapacity",
"cellId",
"band",
"site_config_band",
"trxRfPower",
"BCCH",
"number_trx_per_cell",
"number_trx_per_bcf",
"TRX_TCH",
"MAL_TCH",
"Longitude",
"Latitude",
]
TRX_COLUMNS = [
"ID_BTS",
"number_tch_per_cell",
"number_sd_per_cell",
"number_bcch_per_cell",
"number_ccch_per_cell",
"number_cbc_per_cell",
"number_total_channels_per_cell",
"number_signals_per_cell",
]
KPI_COLUMNS = [
"date",
"BTS_name",
"TCH_availability_ratio",
"2G_Carried_Traffic",
"TCH_call_blocking",
"TCH_ABIS_FAIL_CALL_c001084",
"SDCCH_real_blocking",
]
BH_COLUMNS_FOR_CAPACITY = [
"Max_Traffic BH",
"Avg_Traffic BH",
"max_tch_call_blocking_bh",
"avg_tch_call_blocking_bh",
"number_of_days_with_tch_blocking_exceeded_bh",
"tch_call_blocking_bh_comment",
"max_sdcch_real_blocking_bh",
"avg_sdcch_real_blocking_bh",
"number_of_days_with_sdcch_blocking_exceeded_bh",
"sdcch_real_blocking_bh_comment",
"Average_cell_availability_bh",
"number_of_days_exceeding_availability_threshold_bh",
"availability_comment_bh",
"max_tch_abis_fail_bh",
"avg_tch_abis_fail_bh",
"number_of_days_with_tch_abis_fail_exceeded_bh",
"tch_abis_fail_bh_comment",
]
DAILY_COLUMNS_FOR_CAPACITY = [
"Average_cell_availability_daily",
"number_of_days_exceeding_availability_threshold_daily",
"availability_comment_daily",
"max_tch_abis_fail_daily",
"avg_tch_abis_fail_daily",
"number_of_days_with_tch_abis_fail_exceeded_daily",
"tch_abis_fail_daily_comment",
]
def bh_traffic_analysis(
df: pd.DataFrame,
number_of_kpi_days: int,
) -> pd.DataFrame:
result_df = df.copy()
last_days_df: pd.DataFrame = result_df.iloc[:, -number_of_kpi_days:]
# last_days_df = last_days_df.fillna(0)
result_df["Avg_Traffic BH"] = last_days_df.mean(axis=1).round(2)
result_df["Max_Traffic BH"] = last_days_df.max(axis=1)
return result_df
def bh_dfs_per_kpi(
df: pd.DataFrame,
number_of_kpi_days: int = 7,
tch_blocking_threshold: int = 0.50,
sdcch_blocking_threshold: int = 0.50,
number_of_threshold_days: int = 3,
tch_abis_fails_threshold: int = 10,
availability_threshold: int = 95,
) -> pd.DataFrame:
"""
Create pivoted DataFrames for each KPI and perform analysis.
Args:
df: DataFrame containing KPI data
number_of_kpi_days: Number of days to analyze
threshold: Utilization threshold percentage for flagging
number_of_threshold_days: Minimum days above threshold to flag for upgrade
Returns:
DataFrame with combined analysis results
"""
pivoted_kpi_dfs = {}
pivoted_kpi_dfs = create_dfs_per_kpi(
df=df,
pivot_date_column="date",
pivot_name_column="BTS_name",
kpi_columns_from=2,
)
tch_call_blocking_df: pd.DataFrame = pivoted_kpi_dfs["TCH_call_blocking"]
sdcch_real_blocking_df: pd.DataFrame = pivoted_kpi_dfs["SDCCH_real_blocking"]
Carried_Traffic_df: pd.DataFrame = pivoted_kpi_dfs["2G_Carried_Traffic"]
tch_availability_ratio_df: pd.DataFrame = pivoted_kpi_dfs["TCH_availability_ratio"]
tch_abis_fails_df: pd.DataFrame = pivoted_kpi_dfs["TCH_ABIS_FAIL_CALL_c001084"]
# ANALISYS
tch_call_blocking_df = analyze_tch_call_blocking(
df=tch_call_blocking_df,
number_of_kpi_days=number_of_kpi_days,
number_of_threshold_days=number_of_threshold_days,
tch_blocking_threshold=tch_blocking_threshold,
analysis_type="BH",
)
sdcch_real_blocking_df = analyze_sdcch_call_blocking(
df=sdcch_real_blocking_df,
number_of_kpi_days=number_of_kpi_days,
sdcch_blocking_threshold=sdcch_blocking_threshold,
number_of_threshold_days=number_of_threshold_days,
analysis_type="BH",
)
Carried_Traffic_df = bh_traffic_analysis(
df=Carried_Traffic_df,
number_of_kpi_days=number_of_kpi_days,
)
tch_abis_fails_df = analyze_tch_abis_fails(
df=tch_abis_fails_df,
number_of_kpi_days=number_of_kpi_days,
tch_abis_fails_threshold=tch_abis_fails_threshold,
number_of_threshold_days=number_of_threshold_days,
analysis_type="BH",
)
tch_availability_ratio_df = cell_availability_analysis(
df=tch_availability_ratio_df,
days=number_of_kpi_days,
availability_threshold=availability_threshold,
analysis_type="BH",
)
bh_kpi_df = pd.concat(
[
Carried_Traffic_df,
tch_call_blocking_df,
sdcch_real_blocking_df,
tch_availability_ratio_df,
tch_abis_fails_df,
],
axis=1,
)
return bh_kpi_df
def analyse_bh_data(
bh_report_path: str,
number_of_kpi_days: int,
tch_blocking_threshold: int,
sdcch_blocking_threshold: int,
number_of_threshold_days: int,
tch_abis_fails_threshold: int,
availability_threshold: int,
) -> pd.DataFrame:
df = pd.read_csv(bh_report_path, delimiter=";")
df = kpi_naming_cleaning(df)
df = create_hourly_date(df)
df = df[KPI_COLUMNS]
df = bh_dfs_per_kpi(
df=df,
number_of_kpi_days=number_of_kpi_days,
tch_blocking_threshold=tch_blocking_threshold,
sdcch_blocking_threshold=sdcch_blocking_threshold,
number_of_threshold_days=number_of_threshold_days,
tch_abis_fails_threshold=tch_abis_fails_threshold,
availability_threshold=availability_threshold,
)
bh_df_for_capacity = df.copy()
bh_df_for_capacity = bh_df_for_capacity[BH_COLUMNS_FOR_CAPACITY]
bh_df_for_capacity = bh_df_for_capacity.reset_index()
# If columns have multiple levels (MultiIndex), flatten them
if isinstance(bh_df_for_capacity.columns, pd.MultiIndex):
bh_df_for_capacity.columns = [
"_".join([str(el) for el in col if el])
for col in bh_df_for_capacity.columns.values
]
# bh_df_for_capacity = bh_df_for_capacity.reset_index()
# rename Bts_name to name
bh_df_for_capacity = bh_df_for_capacity.rename(columns={"BTS_name": "name"})
return [bh_df_for_capacity, df]
def daily_dfs_per_kpi(
df: pd.DataFrame,
number_of_kpi_days: int = 7,
availability_threshold: int = 95,
number_of_threshold_days: int = 3,
tch_abis_fails_threshold: int = 10,
sdcch_blocking_threshold: int = 0.5,
tch_blocking_threshold: int = 0.5,
) -> pd.DataFrame:
"""
Create pivoted DataFrames for each KPI and perform analysis.
Args:
df: DataFrame containing KPI data
number_of_kpi_days: Number of days to analyze
threshold: Utilization threshold percentage for flagging
number_of_threshold_days: Minimum days above threshold to flag for upgrade
Returns:
DataFrame with combined analysis results
"""
pivoted_kpi_dfs = {}
pivoted_kpi_dfs = create_dfs_per_kpi(
df=df,
pivot_date_column="date",
pivot_name_column="BTS_name",
kpi_columns_from=2,
)
tch_call_blocking_df: pd.DataFrame = pivoted_kpi_dfs["TCH_call_blocking"]
sdcch_real_blocking_df: pd.DataFrame = pivoted_kpi_dfs["SDCCH_real_blocking"]
Carried_Traffic_df: pd.DataFrame = pivoted_kpi_dfs["2G_Carried_Traffic"]
tch_availability_ratio_df: pd.DataFrame = pivoted_kpi_dfs["TCH_availability_ratio"]
tch_abis_fails_df: pd.DataFrame = pivoted_kpi_dfs["TCH_ABIS_FAIL_CALL_c001084"]
tch_availability_ratio_df = cell_availability_analysis(
df=tch_availability_ratio_df,
days=number_of_kpi_days,
availability_threshold=availability_threshold,
)
sdcch_real_blocking_df = analyze_sdcch_call_blocking(
df=sdcch_real_blocking_df,
number_of_kpi_days=number_of_kpi_days,
sdcch_blocking_threshold=sdcch_blocking_threshold,
number_of_threshold_days=number_of_threshold_days,
analysis_type="Daily",
)
tch_call_blocking_df = analyze_tch_call_blocking(
df=tch_call_blocking_df,
number_of_kpi_days=number_of_kpi_days,
number_of_threshold_days=number_of_threshold_days,
tch_blocking_threshold=tch_blocking_threshold,
analysis_type="Daily",
)
tch_abis_fails_df = analyze_tch_abis_fails(
df=tch_abis_fails_df,
number_of_kpi_days=number_of_kpi_days,
tch_abis_fails_threshold=tch_abis_fails_threshold,
number_of_threshold_days=number_of_threshold_days,
analysis_type="Daily",
)
daily_kpi_df = pd.concat(
[
tch_availability_ratio_df,
Carried_Traffic_df,
tch_call_blocking_df,
sdcch_real_blocking_df,
tch_abis_fails_df,
],
axis=1,
)
daily_kpi_df = combine_comments(
daily_kpi_df,
"availability_comment_daily",
"tch_abis_fail_daily_comment",
"sdcch_real_blocking_daily_comment",
new_column="sdcch_comments",
)
daily_kpi_df = combine_comments(
daily_kpi_df,
"availability_comment_daily",
"tch_abis_fail_daily_comment",
"tch_call_blocking_daily_comment",
new_column="tch_comments",
)
return daily_kpi_df
def analyse_daily_data(
daily_report_path: str,
number_of_kpi_days: int,
tch_abis_fails_threshold: int,
availability_threshold: int,
number_of_threshold_days: int,
sdcch_blocking_threshold: int,
tch_blocking_threshold: int,
) -> pd.DataFrame:
df = pd.read_csv(daily_report_path, delimiter=";")
df = kpi_naming_cleaning(df)
df = create_daily_date(df)
df = df[KPI_COLUMNS]
df = daily_dfs_per_kpi(
df=df,
number_of_kpi_days=number_of_kpi_days,
availability_threshold=availability_threshold,
tch_abis_fails_threshold=tch_abis_fails_threshold,
number_of_threshold_days=number_of_threshold_days,
sdcch_blocking_threshold=sdcch_blocking_threshold,
tch_blocking_threshold=tch_blocking_threshold,
)
daily_df_for_capacity = df.copy()
daily_df_for_capacity = daily_df_for_capacity[DAILY_COLUMNS_FOR_CAPACITY]
daily_df_for_capacity = daily_df_for_capacity.reset_index()
if isinstance(daily_df_for_capacity.columns, pd.MultiIndex):
daily_df_for_capacity.columns = [
"_".join([str(el) for el in col if el])
for col in daily_df_for_capacity.columns.values
]
# Rename "BTS_name" to "name"
daily_df_for_capacity = daily_df_for_capacity.rename(columns={"BTS_name": "name"})
return daily_df_for_capacity, df
def get_gsm_databases(dump_path: str) -> pd.DataFrame:
dfs = combined_gsm_database(dump_path)
bts_df: pd.DataFrame = dfs[0]
trx_df: pd.DataFrame = dfs[2]
# Clean GSM df
bts_df = bts_df[GSM_COLUMNS]
trx_df = trx_df[TRX_COLUMNS]
# Remove duplicate in TRX df
trx_df = trx_df.drop_duplicates(subset=["ID_BTS"])
gsm_df = pd.merge(bts_df, trx_df, on="ID_BTS", how="left")
# add hf_rate_coef
gsm_df["hf_rate_coef"] = gsm_df["amrSegLoadDepTchRateLower"].map(
GsmAnalysis.hf_rate_coef
)
# Add "GPRS" colomn equal to (dedicatedGPRScapacity * number_tch_per_cell)/100
gsm_df["GPRS"] = (
gsm_df["dedicatedGPRScapacity"] * gsm_df["number_tch_per_cell"]
) / 100
# "TCH Actual HR%" equal to "number of TCH" multiplyed by "Coef HF rate"
gsm_df["TCH Actual HR%"] = gsm_df["number_tch_per_cell"] * gsm_df["hf_rate_coef"]
# Remove empty rows
gsm_df = gsm_df.dropna(subset=["TCH Actual HR%"])
# Get "Offered Traffic BH" by mapping approximate "TCH Actual HR%" to 2G analysis_utility "erlangB" dict
gsm_df["Offered Traffic BH"] = gsm_df["TCH Actual HR%"].apply(
lambda x: GsmAnalysis.erlangB_table.get(int(x), 0)
)
return gsm_df
def get_operational_neighbours(distance: int) -> pd.DataFrame:
operational_df: pd.DataFrame = GsmCapacity.operational_neighbours_df
operational_df = operational_df[
["ID_BTS", "name", "operational_comment", "Longitude", "Latitude"]
]
# keep row only if column "operational_comment" is not "Operational is OK"
operational_df = operational_df[
operational_df["operational_comment"] != "Operational is OK"
]
operational_df = operational_df[
operational_df[["Latitude", "Longitude"]].notna().all(axis=1)
]
# Rename all columns in operational_df by adding "Dataset2_" prefix
operational_df = operational_df.add_prefix("Dataset2_")
congested_df: pd.DataFrame = GsmCapacity.operational_neighbours_df
congested_df = congested_df[
["ID_BTS", "name", "BH Congestion status", "Longitude", "Latitude"]
]
# Remove rows where "BH Congestion status" is empty or NaN
congested_df = congested_df[
congested_df["BH Congestion status"].notna()
& congested_df["BH Congestion status"].astype(str).str.len().astype(bool)
]
# Remove rows where "BH Congestion status" is "nan, nan"
congested_df = congested_df[congested_df["BH Congestion status"] != "nan, nan"]
# Remove rows where Latitude and Longitude are empty
congested_df = congested_df[
congested_df[["Latitude", "Longitude"]].notna().all(axis=1)
]
# Rename all columns in congested_df by adding "Dataset1_" prefix
congested_df = congested_df.add_prefix("Dataset1_")
distances_dfs = calculate_distances(
congested_df,
operational_df,
"Dataset1_ID_BTS",
"Dataset1_Latitude",
"Dataset1_Longitude",
"Dataset2_ID_BTS",
"Dataset2_Latitude",
"Dataset2_Longitude",
)
distances_df = distances_dfs[0]
df1 = distances_df[distances_df["Distance_km"] <= distance]
# Rename all columns in df1
df1 = df1.rename(
columns={
"Dataset1_ID_BTS": "Source_ID_BTS",
"Dataset1_name": "Source_name",
"Dataset1_BH Congestion status": "Source_BH Congestion status",
"Dataset1_Longitude": "Source_Longitude",
"Dataset1_Latitude": "Source_Latitude",
"Dataset2_ID_BTS_Dataset2": "Neighbour_ID_BTS",
"Dataset2_name_Dataset2": "Neighbour_name",
"Dataset2_operational_comment_Dataset2": "Neighbour_operational_comment",
"Dataset2_Longitude_Dataset2": "Neighbour_Longitude",
"Dataset2_Latitude_Dataset2": "Neighbour_Latitude",
}
)
# Remove rows if Source_name = Neighbour_name
df1 = df1[df1["Source_name"] != df1["Neighbour_name"]]
# Reset index
df1 = df1.reset_index(drop=True)
return df1
def analyze_gsm_data(
dump_path: str,
daily_report_path: str,
bh_report_path: str,
number_of_kpi_days: int,
number_of_threshold_days: int,
availability_threshold: int,
tch_abis_fails_threshold: int,
sdcch_blocking_threshold: float,
tch_blocking_threshold: float,
max_traffic_threshold: int,
operational_neighbours_distance: int,
):
GsmCapacity.operational_neighbours_df = None
daily_kpi_dfs: pd.DataFrame = analyse_daily_data(
daily_report_path=daily_report_path,
number_of_kpi_days=number_of_kpi_days,
availability_threshold=availability_threshold,
tch_abis_fails_threshold=tch_abis_fails_threshold,
number_of_threshold_days=number_of_threshold_days,
sdcch_blocking_threshold=sdcch_blocking_threshold,
tch_blocking_threshold=tch_blocking_threshold,
)
gsm_database_df: pd.DataFrame = get_gsm_databases(dump_path)
bh_kpi_dfs = analyse_bh_data(
bh_report_path=bh_report_path,
number_of_kpi_days=number_of_kpi_days,
tch_blocking_threshold=tch_blocking_threshold,
sdcch_blocking_threshold=sdcch_blocking_threshold,
number_of_threshold_days=number_of_threshold_days,
tch_abis_fails_threshold=tch_abis_fails_threshold,
availability_threshold=availability_threshold,
)
bh_kpi_df = bh_kpi_dfs[0]
bh_kpi_full_df = bh_kpi_dfs[1]
daily_kpi_df = daily_kpi_dfs[0]
daily_kpi_full_df = daily_kpi_dfs[1]
gsm_analysis_df = gsm_database_df.merge(bh_kpi_df, on="name", how="left")
gsm_analysis_df = gsm_analysis_df.merge(daily_kpi_df, on="name", how="left")
# "TCH UTILIZATION (@Max Traffic)" equal to "(Max_Trafic" divided by "Offered Traffic BH)*100"
gsm_analysis_df["TCH UTILIZATION (@Max Traffic)"] = (
gsm_analysis_df["Max_Traffic BH"] / gsm_analysis_df["Offered Traffic BH"]
) * 100
# Add column "Tch utilization comments" : if "TCH UTILIZATION (@Max Traffic)" exceeded it's threshold then "Tch utilization exceeded threshold else None
gsm_analysis_df["Tch utilization comments"] = np.where(
gsm_analysis_df["TCH UTILIZATION (@Max Traffic)"] > max_traffic_threshold,
"Tch utilization exceeded threshold",
None,
)
# Add "BH Congestion status" : concatenate "Tch utilization comments" + "tch_call_blocking_bh_comment" + "sdcch_real_blocking_bh_comment"
gsm_analysis_df = combine_comments(
gsm_analysis_df,
"Tch utilization comments",
"tch_call_blocking_bh_comment",
"sdcch_real_blocking_bh_comment",
new_column="BH Congestion status",
)
# Add "ERLANGB value" =MAX TRAFFIC/(1-(MAX TCH call blocking/200))
gsm_analysis_df["ErlabngB_value"] = gsm_analysis_df["Max_Traffic BH"] / (
1 - (gsm_analysis_df["max_tch_call_blocking_bh"] / 200)
)
# - Get "Target FR CHs" by mapping "ERLANG value" to 2G analysis_utility "erlangB" dict
gsm_analysis_df["Target FR CHs"] = gsm_analysis_df["ErlabngB_value"].apply(
lambda x: GsmAnalysis.erlangB_table.get(int(x) if pd.notnull(x) else 0, 0)
)
# "Target HR CHs" equal to "Target FR CHs" * 2
gsm_analysis_df["Target HR CHs"] = gsm_analysis_df["Target FR CHs"] * 2
# - Target TCHs equal to Target HR CHs + Signal + GPRS + SDCCH
gsm_analysis_df["Target TCHs"] = (
gsm_analysis_df["Target HR CHs"]
+ gsm_analysis_df["number_signals_per_cell"]
+ gsm_analysis_df["GPRS"]
+ gsm_analysis_df["number_sd_per_cell"]
)
# "Target TRXs" equal to roundup(Target TCHs/8)
gsm_analysis_df["Target TRXs"] = np.ceil(
gsm_analysis_df["Target TCHs"] / 8
) # df["Target TCHs"] / 8
# "Number of required TRXs" equal to difference between "Target TRXs" and "number_trx_per_cell"
gsm_analysis_df["Number of required TRXs"] = (
gsm_analysis_df["Target TRXs"] - gsm_analysis_df["number_trx_per_cell"]
)
# if "availability_comment_daily" equal to "Down Site" then "Down Site"
# if "availability_comment_daily" is not "Availability OK" and "tch_abis_fail_daily_comment" equal to "tch abis fail exceeded threshold" then "Availability and TX issues"
# if "availability_comment_daily" is not "Availability OK" and "tch_abis_fail_daily_comment" is empty then "Availability issues"
# if "availability_comment_daily" is "Availability OK" and "tch_abis_fail_daily_comment" equal to "tch abis fail exceeded threshold" then "TX issues"
# Else "Operational is OK"
gsm_analysis_df["operational_comment"] = np.select(
[
gsm_analysis_df["availability_comment_daily"] == "Down Site", # 1
(gsm_analysis_df["availability_comment_daily"] != "Availability OK")
& (
gsm_analysis_df["tch_abis_fail_daily_comment"]
== "tch abis fail exceeded threshold"
), # 2
(gsm_analysis_df["availability_comment_daily"] != "Availability OK")
& pd.isna(gsm_analysis_df["tch_abis_fail_daily_comment"]), # 3
(gsm_analysis_df["availability_comment_daily"] == "Availability OK")
& (
gsm_analysis_df["tch_abis_fail_daily_comment"]
== "tch abis fail exceeded threshold"
), # 4
],
[
"Down Site", # 1
"Availability and TX issues", # 2
"Availability issues", # 3
"TX issues", # 4
],
default="Operational is OK",
)
# Add "Final comment" with "BH Congestion status" + "operational_comment"
gsm_analysis_df = combine_comments(
gsm_analysis_df,
"BH Congestion status",
"operational_comment",
new_column="Final comment",
)
# Map the final comment using final_comment_mapping
gsm_analysis_df["Final comment summary"] = gsm_analysis_df["Final comment"].map(
GsmCapacity.final_comment_mapping
)
gsm_analysis_df = gsm_analysis_df[GSM_ANALYSIS_COLUMNS]
GsmCapacity.operational_neighbours_df = gsm_analysis_df[
OPERATIONAL_NEIGHBOURS_COLUMNS
]
distance_df = get_operational_neighbours(operational_neighbours_distance)
return [gsm_analysis_df, bh_kpi_full_df, daily_kpi_full_df, distance_df]
# return [gsm_analysis_df, bh_kpi_full_df, daily_kpi_full_df]