File size: 41,749 Bytes
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

import logging
import traceback
from typing import Dict, List, Any, Optional

logger = logging.getLogger(__name__)

class FunctionalZoneIdentifier:
    """
    作為功能區域辨識的主要窗口
    整合區域評估和場景特定的區域辨識邏輯,提供統一的功能區域辨識接口
    """

    def __init__(self, zone_evaluator=None, scene_zone_identifier=None, scene_viewpoint_analyzer=None):
        """
        初始化功能區域識別器

        Args:
            zone_evaluator: 區域評估器實例
            scene_zone_identifier: 場景區域辨識器實例
            scene_viewpoint_analyzer: 場景視角分析器
        """
        try:
            self.zone_evaluator = zone_evaluator
            self.scene_zone_identifier = scene_zone_identifier

            self.scene_viewpoint_analyzer = scene_viewpoint_analyzer
            self.viewpoint_detector = scene_viewpoint_analyzer

            logger.info("FunctionalZoneIdentifier initialized successfully with SceneViewpointAnalyzer")

        except Exception as e:
            logger.error(f"Failed to initialize FunctionalZoneIdentifier: {str(e)}")
            logger.error(traceback.format_exc())
            raise

    def identify_functional_zones(self, detected_objects: List[Dict], scene_type: str) -> Dict:
        """
        識別場景內的功能區域,具有針對不同視角和文化背景的改進檢測能力。
        如果偵測到 is_landmark=True 的物件,則優先直接呼叫 identify_landmark_zones 並回傳結果。
        """

        try:
            # 1. 如果沒有啟用地標功能,就先把所有有 is_landmark=True 的物件過濾掉
            if not getattr(self, 'enable_landmark', True):
                detected_objects = [obj for obj in detected_objects if not obj.get("is_landmark", False)]

            # 2. 只要檢測到任何 is_landmark=True 的物件,立即優先使用 identify_landmark_zones
            landmark_objects = [obj for obj in detected_objects if obj.get("is_landmark", False)]
            if landmark_objects and self.scene_zone_identifier:
                lm_zones = self.scene_zone_identifier.identify_landmark_zones(landmark_objects)
                return self._standardize_zone_keys_and_descriptions(lm_zones)

            # 3. city_street
            if scene_type in ["tourist_landmark", "natural_landmark", "historical_monument"]:
                scene_type = "city_street"

            # 4.  判斷與物件數量檢查
            if self.zone_evaluator:
                should_identify = self.zone_evaluator.evaluate_zone_identification_feasibility(
                    detected_objects, scene_type
                )
                if not should_identify:
                    logger.info(f"Zone identification not feasible for scene type '{scene_type}'")
                    return {}
            else:
                if len(detected_objects) < 2:
                    logger.info("Insufficient objects for zone identification")
                    return {}

            # 5. 建立 category_regions 
            category_regions = self._build_category_regions_mapping(detected_objects)
            zones = {}

            # 6. 檢測場景視角
            viewpoint_info = {"viewpoint": "eye_level"}
            if self.scene_viewpoint_analyzer:
                viewpoint_info = self.scene_viewpoint_analyzer.detect_scene_viewpoint(detected_objects)

            # 7. 根據不同 scene_type 使用各種自己的區域辨識
            if scene_type in ["living_room", "bedroom", "dining_area", "kitchen", "office_workspace", "meeting_room"]:
                if self.scene_zone_identifier:
                    raw_zones = self.scene_zone_identifier.identify_indoor_zones(
                        category_regions, detected_objects, scene_type
                    )
                    zones.update(self._standardize_zone_keys_and_descriptions(raw_zones))

            elif scene_type in ["city_street", "parking_lot", "park_area"]:
                if self.scene_zone_identifier:
                    raw_zones = self.scene_zone_identifier.identify_outdoor_general_zones(
                        category_regions, detected_objects, scene_type
                    )
                    zones.update(self._standardize_zone_keys_and_descriptions(raw_zones))

            elif "aerial" in scene_type or viewpoint_info.get("viewpoint") == "aerial":
                if self.scene_zone_identifier:
                    raw_zones = self.scene_zone_identifier.identify_aerial_view_zones(
                        category_regions, detected_objects, scene_type
                    )
                    zones.update(self._standardize_zone_keys_and_descriptions(raw_zones))

            elif "asian" in scene_type:
                if self.scene_zone_identifier:
                    asian_zones = self.scene_zone_identifier.identify_asian_cultural_zones(
                        category_regions, detected_objects, scene_type
                    )
                    zones.update(self._standardize_zone_keys_and_descriptions(asian_zones))

            elif scene_type == "urban_intersection":
                if self.scene_zone_identifier:
                    raw_zones = self.scene_zone_identifier.identify_intersection_zones(
                        category_regions, detected_objects, viewpoint_info.get("viewpoint")
                    )
                    zones.update(self._standardize_zone_keys_and_descriptions(raw_zones))
                    used_tl_count_per_region = {}
                    for zone_info in raw_zones.values():
                        obj_list = zone_info.get("objects", [])
                        if "traffic light" in obj_list:
                            rg = zone_info.get("region", "")
                            count_in_zone = obj_list.count("traffic light")
                            used_tl_count_per_region[rg] = used_tl_count_per_region.get(rg, 0) + count_in_zone

                    signal_regions = {}
                    for t in [obj for obj in detected_objects if obj.get("class_id") == 9]:
                        region = t.get("region", "")
                        signal_regions.setdefault(region, []).append(t)

                    for idx, (region, signals) in enumerate(signal_regions.items()):
                        total_in_region = len(signals)
                        used_in_region = used_tl_count_per_region.get(region, 0)
                        remaining_in_region = total_in_region - used_in_region

                        if remaining_in_region > 0:
                            direction = self._get_directional_description(region)
                            if direction and direction != "central":
                                zone_key = f"{direction} traffic control area"
                            else:
                                zone_key = "primary traffic control area" if idx == 0 else "auxiliary traffic control area"

                            if zone_key in zones:
                                suffix = 1
                                new_key = f"{zone_key} ({suffix})"
                                while new_key in zones:
                                    suffix += 1
                                    new_key = f"{zone_key} ({suffix})"
                                zone_key = new_key

                            zones[zone_key] = {
                                "region": region,
                                "objects": ["traffic light"] * remaining_in_region,
                                "description": f"Traffic control area with {remaining_in_region} traffic lights in {region}"
                            }

                    for region, signals in signal_regions.items():
                        used = used_tl_count_per_region.get(region, 0)
                        total = len(signals)
                        remaining = total - used
                        # print(f"[DEBUG] Region '{region}': Total TL = {total}, Used in crossing = {used}, Remaining = {remaining}")

            elif scene_type == "financial_district":
                if self.scene_zone_identifier:
                    fd_zones = self.scene_zone_identifier.identify_financial_district_zones(
                        category_regions, detected_objects
                    )
                    zones.update(self._standardize_zone_keys_and_descriptions(fd_zones))

            elif scene_type == "upscale_dining":
                if self.scene_zone_identifier:
                    ud_zones = self.scene_zone_identifier.identify_upscale_dining_zones(
                        category_regions, detected_objects
                    )
                    zones.update(self._standardize_zone_keys_and_descriptions(ud_zones))

            else:
                # 如果不是上述任何一種場景,就用「預設功能區」
                default_zones = self._identify_default_zones(category_regions, detected_objects)
                zones.update(self._standardize_zone_keys_and_descriptions(default_zones))

            # 8. 如果此時 zones 仍為空,就會變成 default → basic → fallback
            if not zones:
                default_zones = self._identify_default_zones(category_regions, detected_objects)
                if default_zones:
                    zones.update(self._standardize_zone_keys_and_descriptions(default_zones))
                else:
                    basic_zones = self._create_basic_zones_from_objects(detected_objects, scene_type)
                    zones.update(self._standardize_zone_keys_and_descriptions(basic_zones))

            # 通用 fallback:把所有還沒被列出的 (class_name, region) 通通補進去
            fallback_zones = self._generate_category_fallback_zones(detected_objects, zones)
            zones.update(fallback_zones)

            # Debug: 列印出各功能區的 traffic light 統計
            total_tl_in_zones = 0
            for zone_key, zone_info in zones.items():
                if isinstance(zone_info, dict):
                    sub_objs = zone_info.get("objects", [])
                else:
                    sub_objs = []
                t_in_zone = [obj for obj in sub_objs if obj == "traffic light"]
                # print(f"[DEBUG] identify_functional_zones - Zone '{zone_key}' has {len(t_in_zone)} traffic light(s).")
                total_tl_in_zones += len(t_in_zone)
            # print(f"[DEBUG] identify_functional_zones - Total traffic lights in zones: {total_tl_in_zones}")

            logger.info(f"Identified {len(zones)} functional zones for scene type '{scene_type}'")
            return zones

        except Exception as e:
            logger.error(f"Error identifying functional zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _standardize_zone_keys_and_descriptions(self, raw_zones: Dict) -> Dict:
        """
        標準化區域鍵名和描述,將內部標識符轉換為描述性名稱

        Args:
            raw_zones: 原始區域識別結果

        Returns:
            Dict: 標準化後的區域字典
        """
        try:
            standardized_zones = {}

            for zone_key, zone_data in raw_zones.items():
                # 生成描述性的區域鍵名
                descriptive_key = self._generate_descriptive_zone_key(zone_key, zone_data)

                # 確保區域描述也經過標準化
                if isinstance(zone_data, dict) and "description" in zone_data:
                    zone_data["description"] = self._enhance_zone_description(zone_data["description"], zone_data)

                standardized_zones[descriptive_key] = zone_data

            return standardized_zones

        except Exception as e:
            logger.error(f"Error standardizing zone keys and descriptions: {str(e)}")
            return raw_zones

    def _generate_descriptive_zone_key(self, original_key: str, zone_data: Dict) -> str:
        """
        基於區域內容生成描述性的鍵名
        核心修改:只要該區域內有任一個 'traffic light',就優先回傳 'traffic control zone',
        """
        try:
            objects = zone_data.get("objects", [])
            region = zone_data.get("region", "")

            # 優先檢查是否含有 traffic light 
            if any(obj == "traffic light" or "traffic light" in obj for obj in objects):
                return "traffic control zone"

            # 如果沒有 traffic light,才繼續分析「主要物件」順序
            primary_objects = self._analyze_primary_objects(objects)

            # 依序檢查人、車、家具、紅綠燈等
            if "person" in primary_objects:
                if len([o for o in objects if o == "person"]) > 1:
                    return "pedestrian activity area"
                else:
                    return "individual activity zone"
            elif any(vehicle in primary_objects for vehicle in ["car", "truck", "bus", "motorcycle"]):
                return "vehicle movement area"
            elif any(furniture in primary_objects for furniture in ["chair", "table", "sofa", "bed"]):
                return "furniture arrangement area"

            # 若上述都不符合,改用「基於位置」做 fallback
            position_descriptions = {
                "top_left": "upper left area",
                "top_center": "upper central area",
                "top_right": "upper right area",
                "middle_left": "left side area",
                "middle_center": "main crossing area",
                "middle_right": "right side area",
                "bottom_left": "lower left area",
                "bottom_center": "lower central area",
                "bottom_right": "lower right area"
            }
            if region in position_descriptions:
                return position_descriptions[region]

            # 再次檢查主要物件,給出另一種 fallback 命名
            if primary_objects:
                if "traffic light" in primary_objects:
                    return "traffic control zone"
                elif any(vehicle in primary_objects for vehicle in ["car", "truck", "bus"]):
                    return "vehicle movement area"
                elif "person" in primary_objects:
                    return "pedestrian activity area"

            # 最後最後的備用名稱
            return "activity area"

        except Exception as e:
            logger.warning(f"Error generating descriptive key for '{original_key}': {str(e)}")
            return "activity area"

    def _analyze_primary_objects(self, objects: List[str]) -> List[str]:
        """
        分析區域中的主要物件類型

        Args:
            objects: 物件名稱列表

        Returns:
            List[str]: 主要物件類型列表
        """
        try:
            # 計算物件出現頻率
            object_counts = {}
            for obj in objects:
                normalized_obj = obj.replace('_', ' ').lower().strip()
                object_counts[normalized_obj] = object_counts.get(normalized_obj, 0) + 1

            # 按出現頻率排序,返回前三個主要物件
            sorted_objects = sorted(object_counts.items(), key=lambda x: x[1], reverse=True)
            return [obj[0] for obj in sorted_objects[:3]]

        except Exception as e:
            logger.warning(f"Error analyzing primary objects: {str(e)}")
            return []

    def _enhance_zone_description(self, original_description: str, zone_data: Dict) -> str:
        """
        增強區域描述的自然性和完整性
        """
        try:
            if not original_description or not original_description.strip():
                return self._generate_fallback_description(zone_data)

            import re
            enhanced = original_description.strip()

            # 改善技術性表達為自然語言
            enhanced = re.sub(r'\bin central direction\b', 'in the center', enhanced)
            enhanced = re.sub(r'\bin west area\b', 'on the left side', enhanced)
            enhanced = re.sub(r'\bin east direction\b', 'on the right side', enhanced)
            enhanced = re.sub(r'\bnear traffic signals\b', 'near the traffic lights', enhanced)
            enhanced = re.sub(r'\bwith (\d+) (\w+)\b', r'where \1 \2 can be seen', enhanced)

            # 移除重複和冗餘表達
            enhanced = re.sub(r'\barea with.*?in.*?area\b', lambda m: m.group(0).split(' in ')[0], enhanced)
            enhanced = enhanced.replace('traffic area', 'area').replace('crossing area', 'crossing')

            # 標準化描述結構
            if enhanced.startswith('Pedestrian'):
                enhanced = re.sub(r'^Pedestrian crossing area', 'The main pedestrian crossing', enhanced)
            elif enhanced.startswith('Vehicle'):
                enhanced = re.sub(r'^Vehicle traffic area', 'The vehicle movement area', enhanced)
            elif enhanced.startswith('Traffic control'):
                enhanced = re.sub(r'^Traffic control area', 'Traffic management elements', enhanced)

            # 移除內部標識符格式
            enhanced = re.sub(r'\b\w+_\w+(?:_\w+)*\b', lambda m: m.group(0).replace('_', ' '), enhanced)

            # 確保描述的完整性
            if not enhanced.endswith('.'):
                enhanced += '.'

            # 改善描述的自然性
            enhanced = enhanced.replace('with with', 'with')
            enhanced = re.sub(r'\s{2,}', ' ', enhanced)

            return enhanced

        except Exception as e:
            logger.warning(f"Error enhancing zone description: {str(e)}")
            return original_description if original_description else "A functional area within the scene."

    def _generate_fallback_description(self, zone_data: Dict) -> str:
        """
        為缺少描述的區域生成備用描述

        Args:
            zone_data: 區域數據

        Returns:
            str: 備用描述
        """
        try:
            objects = zone_data.get("objects", [])
            region = zone_data.get("region", "")

            if objects:
                object_count = len(objects)
                unique_objects = list(set(objects))

                if object_count == 1:
                    return f"Area containing {unique_objects[0].replace('_', ' ')}."
                elif len(unique_objects) <= 3:
                    obj_list = ", ".join([obj.replace('_', ' ') for obj in unique_objects])
                    return f"Area featuring {obj_list}."
                else:
                    return f"Multi-functional area with {object_count} elements including various objects."

            return "Functional area within the scene."

        except Exception as e:
            logger.warning(f"Error generating fallback description: {str(e)}")
            return "Activity area."

    def _build_category_regions_mapping(self, detected_objects: List[Dict]) -> Dict:
        """
        建立物件按類別和區域的分組映射

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            按類別和區域分組的物件字典
        """
        try:
            category_regions = {}

            for obj in detected_objects:
                category = self._categorize_object(obj)
                if not category:
                    continue

                if category not in category_regions:
                    category_regions[category] = {}

                region = obj.get("region", "center")
                if region not in category_regions[category]:
                    category_regions[category][region] = []

                category_regions[category][region].append(obj)

            logger.debug(f"Built category regions mapping with {len(category_regions)} categories")
            return category_regions

        except Exception as e:
            logger.error(f"Error building category regions mapping: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _categorize_object(self, obj: Dict) -> str:
        """
        將檢測到的物件分類到功能類別中,用於區域識別

        Args:
            obj: 物件字典

        Returns:
            物件功能類別字串
        """
        try:
            class_id = obj.get("class_id", -1)
            class_name = obj.get("class_name", "").lower()

            # 使用現有的類別映射(如果可用)
            if hasattr(self, 'OBJECT_CATEGORIES') and self.OBJECT_CATEGORIES:
                for category, ids in self.OBJECT_CATEGORIES.items():
                    if class_id in ids:
                        return category

            # 基於COCO類別名稱的後備分類
            furniture_items = ["chair", "couch", "bed", "dining table", "toilet"]
            plant_items = ["potted plant"]
            electronic_items = ["tv", "laptop", "mouse", "remote", "keyboard", "cell phone"]
            vehicle_items = ["bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat"]
            person_items = ["person"]
            kitchen_items = ["bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
                            "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog",
                            "pizza", "donut", "cake", "refrigerator", "oven", "toaster", "sink", "microwave"]
            sports_items = ["frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat",
                        "baseball glove", "skateboard", "surfboard", "tennis racket"]
            personal_items = ["handbag", "tie", "suitcase", "umbrella", "backpack"]

            if any(item in class_name for item in furniture_items):
                return "furniture"
            elif any(item in class_name for item in plant_items):
                return "plant"
            elif any(item in class_name for item in electronic_items):
                return "electronics"
            elif any(item in class_name for item in vehicle_items):
                return "vehicle"
            elif any(item in class_name for item in person_items):
                return "person"
            elif any(item in class_name for item in kitchen_items):
                return "kitchen_items"
            elif any(item in class_name for item in sports_items):
                return "sports"
            elif any(item in class_name for item in personal_items):
                return "personal_items"
            else:
                return "misc"

        except Exception as e:
            logger.error(f"Error categorizing object: {str(e)}")
            logger.error(traceback.format_exc())
            return "misc"

    def _identify_default_zones(self, category_regions: Dict, detected_objects: List[Dict]) -> Dict:
        """
        當沒有匹配到特定場景類型時的一般功能區域識別

        Args:
            category_regions: 按類別和區域分組的物件字典
            detected_objects: 檢測到的物件列表

        Returns:
            預設功能區域字典
        """
        try:
            zones = {}

            # 按類別分組物件並找到主要集中區域
            for category, regions in category_regions.items():
                if not regions:
                    continue

                # 找到此類別中物件最多的區域
                main_region = max(regions.items(),
                            key=lambda x: len(x[1]),
                            default=(None, []))

                if main_region[0] is None or len(main_region[1]) < 2:
                    continue

                # 創建基於物件類別的區域
                zone_objects = [obj["class_name"] for obj in main_region[1]]

                # 如果物件太少,跳過
                if len(zone_objects) < 2:
                    continue

                # 根據類別創建區域名稱和描述
                if category == "furniture":
                    zones["furniture arrangement area"] = {
                        "region": main_region[0],
                        "objects": zone_objects,
                        "description": f"Furniture arrangement area featuring {self._format_object_list_naturally(zone_objects[:3])}"
                    }
                elif category == "electronics":
                    zones["electronics area"] = {
                        "region": main_region[0],
                        "objects": zone_objects,
                        "description": f"Electronics area containing {self._format_object_list_naturally(zone_objects[:3])}"
                    }
                elif category == "kitchen_items":
                    zones["dining_zone"] = {
                        "region": main_region[0],
                        "objects": zone_objects,
                        "description": f"Dining or food area with {', '.join(zone_objects[:3])}"
                    }
                elif category == "vehicle":
                    zones["vehicle_zone"] = {
                        "region": main_region[0],
                        "objects": zone_objects,
                        "description": f"Area with vehicles including {', '.join(zone_objects[:3])}"
                    }
                elif category == "personal_items":
                    zones["personal_items_zone"] = {
                        "region": main_region[0],
                        "objects": zone_objects,
                        "description": f"Area with personal items including {', '.join(zone_objects[:3])}"
                    }

            # 檢查人群聚集
            people_objs = [obj for obj in detected_objects if obj["class_id"] == 0]
            if len(people_objs) >= 2:
                people_regions = {}
                for obj in people_objs:
                    region = obj["region"]
                    if region not in people_regions:
                        people_regions[region] = []
                    people_regions[region].append(obj)

                if people_regions:
                    main_people_region = max(people_regions.items(),
                                        key=lambda x: len(x[1]),
                                        default=(None, []))

                    if main_people_region[0] is not None:
                        zones["people_zone"] = {
                            "region": main_people_region[0],
                            "objects": ["person"] * len(main_people_region[1]),
                            "description": f"Area with {len(main_people_region[1])} people"
                        }

            logger.debug(f"Identified {len(zones)} default zones")
            return zones

        except Exception as e:
            logger.error(f"Error identifying default zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _format_object_list_naturally(self, object_list: List[str]) -> str:
        """
        將物件列表格式化為自然語言表達

        Args:
            object_list: 物件名稱列表

        Returns:
            str: 自然語言格式的物件列表
        """
        try:
            if not object_list:
                return "various items"

            # 標準化物件名稱
            normalized_objects = []
            for obj in object_list:
                normalized = obj.replace('_', ' ').strip()
                if normalized:
                    normalized_objects.append(normalized)

            if not normalized_objects:
                return "various items"

            # 格式化列表
            if len(normalized_objects) == 1:
                return normalized_objects[0]
            elif len(normalized_objects) == 2:
                return f"{normalized_objects[0]} and {normalized_objects[1]}"
            else:
                return ", ".join(normalized_objects[:-1]) + f", and {normalized_objects[-1]}"

        except Exception as e:
            logger.warning(f"Error formatting object list naturally: {str(e)}")
            return "various items"

    def _create_basic_zones_from_objects(self, detected_objects: List[Dict], scene_type: str) -> Dict:
        """
        從個別高置信度物件創建基本功能區域
        這是標準區域識別失敗時的後備方案

        Args:
            detected_objects: 檢測到的物件列表
            scene_type: 場景類型

        Returns:
            基本區域字典
        """
        try:
            zones = {}

            # 專注於高置信度物件
            high_conf_objects = [obj for obj in detected_objects if obj.get("confidence", 0) >= 0.6]

            if not high_conf_objects:
                high_conf_objects = detected_objects  # 後備到所有物件

            # 基於個別重要物件創建區域
            processed_objects = set()  # 避免重複處理相同類型的物件

            for obj in high_conf_objects[:3]:  # 限制為前3個物件
                class_name = obj["class_name"]
                region = obj.get("region", "center")

                # 避免為同一類型物件創建多個區域
                if class_name in processed_objects:
                    continue
                processed_objects.add(class_name)

                # 基於物件類型創建描述性區域
                zone_description = self._get_basic_zone_description(class_name, scene_type)
                descriptive_key = self._generate_object_based_zone_key(class_name, region)

                if zone_description and descriptive_key:
                    zones[descriptive_key] = {
                        "region": region,
                        "objects": [class_name],
                        "description": zone_description
                    }

            logger.debug(f"Created {len(zones)} basic zones from high confidence objects")
            return zones

        except Exception as e:
            logger.error(f"Error creating basic zones from objects: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _generate_object_based_zone_key(self, class_name: str, region: str) -> str:
        """
        基於物件類型和位置生成描述性的區域鍵名

        Args:
            class_name: 物件類別名稱
            region: 區域位置

        Returns:
            str: 描述性區域鍵名
        """
        try:
            # 標準化物件名稱
            normalized_class = class_name.replace('_', ' ').lower().strip()

            # 物件類型對應的區域描述
            object_zone_mapping = {
                'person': 'activity area',
                'car': 'vehicle area',
                'truck': 'vehicle area',
                'bus': 'vehicle area',
                'motorcycle': 'vehicle area',
                'bicycle': 'cycling area',
                'traffic light': 'traffic control area',
                'chair': 'seating area',
                'sofa': 'seating area',
                'bed': 'rest area',
                'dining table': 'dining area',
                'tv': 'entertainment area',
                'laptop': 'workspace area',
                'potted plant': 'decorative area'
            }

            base_description = object_zone_mapping.get(normalized_class, f"{normalized_class} area")

            # 添加位置信息以提供更具體的描述
            position_modifiers = {
                'top_left': 'upper left',
                'top_center': 'upper central',
                'top_right': 'upper right',
                'middle_left': 'left side',
                'middle_center': 'central',
                'middle_right': 'right side',
                'bottom_left': 'lower left',
                'bottom_center': 'lower central',
                'bottom_right': 'lower right'
            }

            if region in position_modifiers:
                return f"{position_modifiers[region]} {base_description}"

            return base_description

        except Exception as e:
            logger.warning(f"Error generating object-based zone key for '{class_name}': {str(e)}")
            return "activity area"

    def _get_basic_zone_description(self, class_name: str, scene_type: str) -> str:
        """
        基於物件和場景類型生成基本區域描述

        Args:
            class_name: 物件類別名稱
            scene_type: 場景類型

        Returns:
            區域描述字串
        """
        try:
            # 物件特定描述
            descriptions = {
                "bed": "Sleeping and rest area",
                "sofa": "Seating and relaxation area",
                "chair": "Seating area",
                "dining table": "Dining and meal area",
                "tv": "Entertainment and media area",
                "laptop": "Work and computing area",
                "potted plant": "Decorative and green space area",
                "refrigerator": "Food storage and kitchen area",
                "car": "Vehicle and transportation area",
                "person": "Activity and social area"
            }

            return descriptions.get(class_name, f"Functional area with {class_name}")

        except Exception as e:
            logger.error(f"Error getting basic zone description for '{class_name}': {str(e)}")
            return f"Functional area with {class_name}"


    def _generate_category_fallback_zones(self, all_detected_objects: List[Dict], current_zones: Dict) -> Dict:
        """
        通用 fallback:針對 all_detected_objects 裡,每一個 (class_name, region) 組合是否已經
        在 current_zones 裡出現過。如果還沒,就為它們產生一個 fallback zone。
        """
        general_fallback = {
                0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
                6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
                11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
                16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
                22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
                27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
                32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
                36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
                40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
                46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
                51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair',
                57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet',
                62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
                67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
                72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
                77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'

        }

        # 1. 統計 current_zones 裡,已使用掉的 (class_name, region) 次數 
        used_count = {}
        for zone_info in current_zones.values():
            rg = zone_info.get("region", "")
            for obj_name in zone_info.get("objects", []):
                key = (obj_name, rg)
                used_count[key] = used_count.get(key, 0) + 1

        # 2. 統計 all_detected_objects 裡的 (class_name, region) 總次數 
        total_count = {}
        for obj in all_detected_objects:
            cname = obj.get("class_name", "")
            rg = obj.get("region", "")
            key = (cname, rg)
            total_count[key] = total_count.get(key, 0) + 1

        # 3. 把 default_classes 轉換成「class_name → fallback 區域 type」的對照表 
        category_to_fallback = {
            # 行人與交通工具
            "person":        "pedestrian area",
            "bicycle":       "vehicle movement area",
            "car":           "vehicle movement area",
            "motorcycle":    "vehicle movement area",
            "airplane":      "vehicle movement area",
            "bus":           "vehicle movement area",
            "train":         "vehicle movement area",
            "truck":         "vehicle movement area",
            "boat":          "vehicle movement area",
            "traffic light": "traffic control area",
            "fire hydrant":  "traffic control area",
            "stop sign":     "traffic control area",
            "parking meter": "traffic control area",
            "bench":         "public furniture area",

            # 動物類、鳥類
            "bird":          "animal area",
            "cat":           "animal area",
            "dog":           "animal area",
            "horse":         "animal area",
            "sheep":         "animal area",
            "cow":           "animal area",
            "elephant":      "animal area",
            "bear":          "animal area",
            "zebra":         "animal area",
            "giraffe":       "animal area",

            # 托運與行李
            "backpack":      "personal items area",
            "umbrella":      "personal items area",
            "handbag":       "personal items area",
            "tie":           "personal items area",
            "suitcase":      "personal items area",

            # 運動器材
            "frisbee":       "sports area",
            "skis":          "sports area",
            "snowboard":     "sports area",
            "sports ball":   "sports area",
            "kite":          "sports area",
            "baseball bat":  "sports area",
            "baseball glove":"sports area",
            "skateboard":    "sports area",
            "surfboard":     "sports area",
            "tennis racket": "sports area",

            # 廚房與食品(Kitchen)
            "bottle":        "kitchen area",
            "wine glass":    "kitchen area",
            "cup":           "kitchen area",
            "fork":          "kitchen area",
            "knife":         "kitchen area",
            "spoon":         "kitchen area",
            "bowl":          "kitchen area",
            "banana":        "kitchen area",
            "apple":         "kitchen area",
            "sandwich":      "kitchen area",
            "orange":        "kitchen area",
            "broccoli":      "kitchen area",
            "carrot":        "kitchen area",
            "hot dog":       "kitchen area",
            "pizza":         "kitchen area",
            "donut":         "kitchen area",
            "cake":          "kitchen area",
            "dining table":  "furniture arrangement area",
            "refrigerator":  "kitchen area",
            "oven":          "kitchen area",
            "microwave":     "kitchen area",
            "toaster":       "kitchen area",
            "sink":          "kitchen area",
            "book":          "miscellaneous area",
            "clock":         "miscellaneous area",
            "vase":          "decorative area",
            "scissors":      "miscellaneous area",
            "teddy bear":    "miscellaneous area",
            "hair drier":    "miscellaneous area",
            "toothbrush":    "miscellaneous area",

            # 電子產品
            "tv":            "electronics area",
            "laptop":        "electronics area",
            "mouse":         "electronics area",
            "remote":        "electronics area",
            "keyboard":      "electronics area",
            "cell phone":    "electronics area",

            # 家具類
            "chair":         "furniture arrangement area",
            "couch":         "furniture arrangement area",
            "bed":           "furniture arrangement area",
            "toilet":        "furniture arrangement area",

            # 植物(室內植物或戶外綠化)
            "potted plant":  "decorative area",
        }

        # 4. 計算缺少的 (class_name, region) 並建立 fallback zone 
        for (cname, rg), total in total_count.items():
            used = used_count.get((cname, rg), 0)
            missing = total - used
            if missing <= 0:
                continue  

            # (A) 決定這個 cname 在 fallback 裡屬於哪個大 class(zone_type)
            zone_type = category_to_fallback.get(cname, "miscellaneous area")

            # (B) 根據 region 與 zone_type 組合成 fallback_key
            fallback_key = f"{rg} {zone_type}"

            # (C) 如果名稱重複,就在後面加 (1),(2),… 避免掉衝突
            if fallback_key in current_zones or fallback_key in general_fallback:
                suffix = 1
                new_key = f"{fallback_key} ({suffix})"
                while new_key in current_zones or new_key in general_fallback:
                    suffix += 1
                    new_key = f"{fallback_key} ({suffix})"
                fallback_key = new_key

            # (D) 建立這支 fallback zone,objects 裡放 missing 個 cname
            general_fallback[fallback_key] = {
                "region": rg,
                "objects": [cname] * missing,
                "description": f"{missing} {cname}(s) placed in fallback {zone_type} for region {rg}"
            }

        return general_fallback