File size: 20,156 Bytes
e83cc4c
e6a18b7
3e80f9c
e6a18b7
 
 
 
 
 
 
e83cc4c
 
 
e6a18b7
 
e83cc4c
 
 
e6a18b7
 
 
 
 
 
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
 
 
 
 
e83cc4c
 
e6a18b7
 
 
 
 
 
 
 
e83cc4c
e6a18b7
 
 
 
 
 
 
 
 
 
e83cc4c
e6a18b7
 
 
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
e83cc4c
e6a18b7
 
 
 
 
e83cc4c
e6a18b7
 
 
e83cc4c
e6a18b7
 
 
e83cc4c
e6a18b7
 
 
e83cc4c
e6a18b7
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
 
 
 
 
e83cc4c
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83cc4c
 
e6a18b7
 
 
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
 
 
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
 
 
 
 
 
 
e83cc4c
e6a18b7
 
 
 
 
 
 
e83cc4c
e6a18b7
 
 
 
 
bb01345
 
 
 
 
 
 
 
 
 
 
e6a18b7
 
 
 
 
bb01345
e6a18b7
 
 
 
 
 
 
e83cc4c
e6a18b7
 
 
e83cc4c
e6a18b7
 
 
 
e83cc4c
e6a18b7
 
 
e83cc4c
e6a18b7
 
 
 
 
e83cc4c
e6a18b7
 
 
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
e83cc4c
e6a18b7
 
 
e83cc4c
e6a18b7
 
 
 
 
e83cc4c
e6a18b7
 
 
 
 
 
e83cc4c
e6a18b7
e83cc4c
e6a18b7
 
 
e83cc4c
 
e6a18b7
 
 
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
 
 
 
 
e83cc4c
 
e6a18b7
4d1f920
e83cc4c
 
4d1f920
 
 
 
 
 
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
 
 
 
 
 
e6a18b7
 
4d1f920
 
 
e83cc4c
e6a18b7
 
 
e83cc4c
e6a18b7
 
 
e83cc4c
e6a18b7
 
 
 
4d1f920
e6a18b7
 
 
 
 
 
e83cc4c
 
 
e6a18b7
 
 
 
e83cc4c
e6a18b7
 
e83cc4c
 
 
 
 
 
e6a18b7
e83cc4c
 
e6a18b7
 
e83cc4c
 
e6a18b7
 
 
 
 
e83cc4c
 
e6a18b7
e83cc4c
 
 
 
 
 
e6a18b7
e83cc4c
 
 
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83cc4c
 
 
 
e6a18b7
e83cc4c
 
e6a18b7
e83cc4c
 
 
e6a18b7
 
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
 
 
 
 
e83cc4c
e6a18b7
 
 
 
 
 
 
 
 
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
e83cc4c
e6a18b7
e83cc4c
e6a18b7
 
 
e83cc4c
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
e83cc4c
e6a18b7
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
e83cc4c
e6a18b7
e83cc4c
e6a18b7
 
 
e83cc4c
e6a18b7
 
 
 
e83cc4c
e6a18b7
 
 
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
 
 
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
 
 
 
 
 
 
e83cc4c
e6a18b7
 
e83cc4c
e6a18b7
 
 
 
 
e83cc4c
e6a18b7
 
 
 
 
 
 
e83cc4c
e6a18b7
e83cc4c
 
e6a18b7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import logging
import traceback
import re
from typing import Dict, List, Any, Optional

from model_manager import ModelManager
from prompt_template_manager import PromptTemplateManager
from response_processor import ResponseProcessor
from text_quality_validator import TextQualityValidator
from landmark_data import ALL_LANDMARKS

class LLMEnhancer:
    """
    LLM增強器的主要窗口,協調模型管理、提示模板、回應處理和品質驗證等組件。
    提供統一的接口來處理場景描述增強、檢測結果驗證和無檢測情況處理。
    """

    def __init__(self,
                 model_path: Optional[str] = None,
                 tokenizer_path: Optional[str] = None,
                 device: Optional[str] = None,
                 max_length: int = 2048,
                 temperature: float = 0.3,
                 top_p: float = 0.85):
        """
        初始化LLM增強器門面

        Args:
            model_path: LLM模型的路徑或HuggingFace模型名稱,預設使用Llama 3.2
            tokenizer_path: tokenizer的路徑,通常與model_path相同
            device: 運行設備 ('cpu'或'cuda'),None時自動檢測
            max_length: 輸入文本的最大長度
            temperature: 生成文本的溫度參數
            top_p: 生成文本時的核心採樣機率閾值
        """
        # 設置專屬logger
        self.logger = logging.getLogger(self.__class__.__name__)
        if not self.logger.handlers:
            handler = logging.StreamHandler()
            formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
            handler.setFormatter(formatter)
            self.logger.addHandler(handler)
            self.logger.setLevel(logging.INFO)

        try:
            # 初始化四個核心組件
            self.model_manager = ModelManager(
                model_path=model_path,
                tokenizer_path=tokenizer_path,
                device=device,
                max_length=max_length,
                temperature=temperature,
                top_p=top_p
            )

            self.prompt_manager = PromptTemplateManager()
            self.response_processor = ResponseProcessor()
            self.quality_validator = TextQualityValidator()

            # 保存模型路徑以供後續使用
            self.model_path = model_path or "meta-llama/Llama-3.2-3B-Instruct"

            self.logger.info("LLMEnhancer facade initialized successfully")

        except Exception as e:
            error_msg = f"Failed to initialize LLMEnhancer facade: {str(e)}"
            self.logger.error(error_msg)
            self.logger.error(traceback.format_exc())
            raise Exception(error_msg) from e

    def enhance_description(self, scene_data: Dict[str, Any]) -> str:
        """
        場景描述增強器主要入口方法,整合所有組件來處理場景描述增強

        Args:
            scene_data: 包含場景資訊的字典,包括原始描述、檢測物件 (含 is_landmark)、
                        場景類型、時間/光線資訊等

        Returns:
            str: 增強後的場景描述
        """
        try:
            self.logger.info("Starting scene description enhancement")

            # 1. 重置模型上下文
            self.model_manager.reset_context()

            # 2. 取出原始描述
            original_desc = scene_data.get("original_description", "")
            if not original_desc:
                self.logger.warning("No original description provided")
                return "No original description provided."

            # 3. 準備物件統計資訊
            object_list = self._prepare_object_statistics(scene_data)
            if not object_list:
                object_keywords = self.quality_validator.extract_objects_from_description(original_desc)
                object_list = ", ".join(object_keywords) if object_keywords else "objects visible in the scene"

            # 4. 檢測地標並準備地標資訊
            landmark_info = self._extract_landmark_info(scene_data)

            # 5. 將地標資訊加入scene_data
            enhanced_scene_data = scene_data.copy()
            if landmark_info:
                enhanced_scene_data["landmark_location_info"] = landmark_info

            # 6. 生成 prompt
            prompt = self.prompt_manager.format_enhancement_prompt_with_landmark(
                scene_data=enhanced_scene_data,
                object_list=object_list,
                original_description=original_desc
            )

            # 7. 生成 LLM 回應
            self.logger.info("Generating LLM response")
            response = self.model_manager.generate_response(prompt)

            # 8. 處理不完整回應(重試機制)
            response = self._handle_incomplete_response(response, prompt, original_desc)

            # 9. 清理 LLM 回應
            model_type = self.model_path
            raw_cleaned = self.response_processor.clean_response(response, model_type)

            # 10. 移除解釋性注釋
            cleaned_response = self.response_processor.remove_explanatory_notes(raw_cleaned)

            # 11. 事實準確性驗證
            try:
                cleaned_response = self.quality_validator.verify_factual_accuracy(
                    original_desc, cleaned_response, object_list
                )
            except Exception:
                self.logger.warning("Fact verification failed; using response without verification")

            # 12. 場景類型一致性確保
            scene_type = scene_data.get("scene_type", "unknown scene")
            word_count = len(cleaned_response.split())
            if word_count >= 5 and scene_type.lower() not in cleaned_response.lower():
                cleaned_response = self.quality_validator.ensure_scene_type_consistency(
                    cleaned_response, scene_type, original_desc
                )

            # 13. 視角一致性處理
            perspective = self.quality_validator.extract_perspective_from_description(original_desc)
            if perspective and perspective.lower() not in cleaned_response.lower():
                cleaned_response = f"{perspective}, {cleaned_response[0].lower()}{cleaned_response[1:]}"

            # 13.5. 最終的 identical 詞彙清理(確保LLM輸出不包含重複性描述)
            identical_final_cleanup = [
                (r'\b(\d+)\s+identical\s+([a-zA-Z\s]+)', r'\1 \2'),
                (r'\b(two|three|four|five|six|seven|eight|nine|ten|eleven|twelve)\s+identical\s+([a-zA-Z\s]+)', r'\1 \2'),
                (r'\bidentical\s+([a-zA-Z\s]+)', r'\1'),
                (r'\bcomprehensive arrangement of\b', 'arrangement of'),
            ]

            for pattern, replacement in identical_final_cleanup:
                cleaned_response = re.sub(pattern, replacement, cleaned_response, flags=re.IGNORECASE)

            # 14. 最終驗證:如果結果過短,嘗試fallback
            final_result = cleaned_response.strip()
            if not final_result or len(final_result) < 20:
                self.logger.warning("Enhanced description too short; attempting fallback")

                # Fallback prompt
                fallback_scene_data = enhanced_scene_data.copy()
                fallback_scene_data["is_fallback"] = True
                fallback_prompt = self.prompt_manager.format_enhancement_prompt_with_landmark(
                    scene_data=fallback_scene_data,
                    object_list=object_list,
                    original_description=original_desc
                )

                fallback_resp = self.model_manager.generate_response(fallback_prompt)
                fallback_cleaned = self.response_processor.clean_response(fallback_resp, model_type)
                fallback_cleaned = self.response_processor.remove_explanatory_notes(fallback_cleaned)

                final_result = fallback_cleaned.strip()
                if not final_result or len(final_result) < 20:
                    self.logger.warning("Fallback also insufficient; returning original")
                    return original_desc

            # 15. display enhanced description
            self.logger.info(f"Scene description enhancement completed successfully ({len(final_result)} chars)")
            return final_result

        except Exception as e:
            error_msg = f"Enhancement failed: {str(e)}"
            self.logger.error(error_msg)
            self.logger.error(traceback.format_exc())
            return scene_data.get("original_description", "Unable to enhance description")

    def _extract_landmark_info(self, scene_data: Dict[str, Any]) -> Optional[Dict[str, str]]:
        """
        提取地標資訊,但不構建prompt內容

        Args:
            scene_data: 場景資料字典

        Returns:
            Optional[Dict[str, str]]: 地標資訊字典,包含name和location,如果沒有地標則返回None
        """
        try:
            # 檢查是否有地標
            lm_id_in_data = scene_data.get("landmark_id")
            if not lm_id_in_data:
                # 從檢測物件中尋找地標
                for obj in scene_data.get("detected_objects", []):
                    if obj.get("is_landmark") and obj.get("landmark_id"):
                        lm_id_in_data = obj["landmark_id"]
                        break

            # 如果沒有檢測到地標,返回None
            if not lm_id_in_data:
                return None

            # 從landmark_data.py提取地標資訊
            if lm_id_in_data in ALL_LANDMARKS:
                lm_info = ALL_LANDMARKS[lm_id_in_data]
                landmark_name = scene_data.get("scene_name", lm_info.get("name", lm_id_in_data))
                landmark_location = lm_info.get("location", "")

                if landmark_location:
                    return {
                        "name": landmark_name,
                        "location": landmark_location,
                        "landmark_id": lm_id_in_data
                    }

            return None

        except Exception as e:
            self.logger.error(f"Error extracting landmark info: {str(e)}")
            return None


    def _prepare_object_statistics(self, scene_data: Dict[str, Any]) -> str:
        """
        準備物件統計資訊用於提示詞生成

        Args:
            scene_data: 場景資料字典

        Returns:
            str: 格式化的物件統計資訊
        """
        try:
            # 高信心度閾值
            high_confidence_threshold = 0.65

            # 優先使用預計算的統計資訊
            object_statistics = scene_data.get("object_statistics", {})
            object_counts = {}

            if object_statistics:
                for class_name, stats in object_statistics.items():
                    if stats.get("count", 0) > 0 and stats.get("avg_confidence", 0) >= high_confidence_threshold:
                        object_counts[class_name] = stats["count"]
            else:
                # 回退到原有的計算方式
                detected_objects = scene_data.get("detected_objects", [])
                filtered_objects = []

                for obj in detected_objects:
                    confidence = obj.get("confidence", 0)
                    class_name = obj.get("class_name", "")

                    # 為特殊類別設置更高閾值
                    special_classes = ["airplane", "helicopter", "boat"]
                    if class_name in special_classes:
                        if confidence < 0.75:
                            continue

                    if confidence >= high_confidence_threshold:
                        filtered_objects.append(obj)

                for obj in filtered_objects:
                    class_name = obj.get("class_name", "")
                    if class_name not in object_counts:
                        object_counts[class_name] = 0
                    object_counts[class_name] += 1

            # 格式化物件描述
            return ", ".join([
                f"{count} {obj}{'s' if count > 1 else ''}"
                for obj, count in object_counts.items()
            ])

        except Exception as e:
            self.logger.error(f"Object statistics preparation failed: {str(e)}")
            return "objects visible in the scene"

    def _handle_incomplete_response(self, response: str, prompt: str, original_desc: str) -> str:
        """
        處理不完整的回應,必要時重新生成

        Args:
            response: 原始回應
            prompt: 使用的提示詞
            original_desc: 原始描述

        Returns:
            str: 處理後的回應
        """
        try:
            # 檢查回應完整性
            is_complete, issue = self.quality_validator.validate_response_completeness(response)

            max_retries = 3
            attempts = 0

            while not is_complete and attempts < max_retries:
                self.logger.warning(f"Incomplete response detected ({issue}), retrying... Attempt {attempts+1}/{max_retries}")

                # 重新生成
                response = self.model_manager.generate_response(prompt)
                is_complete, issue = self.quality_validator.validate_response_completeness(response)
                attempts += 1

            if not response or len(response.strip()) < 10:
                self.logger.warning("Generated response was empty or too short, returning original description")
                return original_desc

            return response

        except Exception as e:
            self.logger.error(f"Incomplete response handling failed: {str(e)}")
            return response  # 返回原始回應

    def verify_detection(self,
                        detected_objects: List[Dict],
                        clip_analysis: Dict[str, Any],
                        scene_type: str,
                        scene_name: str,
                        confidence: float) -> Dict[str, Any]:
        """
        驗證並可能修正YOLO的檢測結果

        Args:
            detected_objects: YOLO檢測到的物體列表
            clip_analysis: CLIP分析結果
            scene_type: 識別的場景類型
            scene_name: 場景名稱
            confidence: 場景分類的信心度

        Returns:
            Dict: 包含驗證結果和建議的字典
        """
        try:
            self.logger.info("Starting detection verification")

            # 格式化驗證提示
            prompt = self.prompt_manager.format_verification_prompt(
                detected_objects=detected_objects,
                clip_analysis=clip_analysis,
                scene_type=scene_type,
                scene_name=scene_name,
                confidence=confidence
            )

            # 調用LLM進行驗證
            verification_result = self.model_manager.generate_response(prompt)

            # 清理回應
            cleaned_result = self.response_processor.clean_response(verification_result, self.model_path)

            # 解析驗證結果
            result = {
                "verification_text": cleaned_result,
                "has_errors": "appear accurate" not in cleaned_result.lower(),
                "corrected_objects": None
            }

            self.logger.info("Detection verification completed")
            return result

        except Exception as e:
            error_msg = f"Detection verification failed: {str(e)}"
            self.logger.error(error_msg)
            self.logger.error(traceback.format_exc())
            return {
                "verification_text": "Verification failed",
                "has_errors": False,
                "corrected_objects": None
            }

    def handle_no_detection(self, clip_analysis: Dict[str, Any]) -> str:
        """
        處理YOLO未檢測到物體的情況

        Args:
            clip_analysis: CLIP分析結果

        Returns:
            str: 生成的場景描述
        """
        try:
            self.logger.info("Handling no detection scenario")

            # 格式化無檢測提示
            prompt = self.prompt_manager.format_no_detection_prompt(clip_analysis)

            # 調用LLM生成描述
            description = self.model_manager.generate_response(prompt)

            # 清理回應
            cleaned_description = self.response_processor.clean_response(description, self.model_path)

            self.logger.info("No detection handling completed")
            return cleaned_description

        except Exception as e:
            error_msg = f"No detection handling failed: {str(e)}"
            self.logger.error(error_msg)
            self.logger.error(traceback.format_exc())
            return "Unable to generate scene description"

    def reset_context(self):
        """重置LLM模型上下文"""
        try:
            self.model_manager.reset_context()
            self.logger.info("LLM context reset completed")
        except Exception as e:
            self.logger.error(f"Context reset failed: {str(e)}")

    def get_call_count(self) -> int:
        """
        獲取模型調用次數

        Returns:
            int: 調用次數
        """
        return self.model_manager.get_call_count()

    def get_model_info(self) -> Dict[str, Any]:
        """
        獲取模型和組件資訊

        Returns:
            Dict[str, Any]: 包含所有組件狀態的綜合資訊
        """
        try:
            return {
                "model_manager": self.model_manager.get_model_info(),
                "prompt_manager": self.prompt_manager.get_template_info(),
                "response_processor": self.response_processor.get_processor_info(),
                "quality_validator": self.quality_validator.get_validator_info(),
                "facade_status": "initialized"
            }
        except Exception as e:
            self.logger.error(f"Failed to get component info: {str(e)}")
            return {"facade_status": "error", "error_message": str(e)}

    def is_model_loaded(self) -> bool:
        """
        檢查模型是否已載入

        Returns:
            bool: 模型載入狀態
        """
        return self.model_manager.is_model_loaded()

    def get_current_device(self) -> str:
        """
        獲取當前運行設備

        Returns:
            str: 當前設備名稱
        """
        return self.model_manager.get_current_device()

    def _detect_scene_type(self, detected_objects: List[Dict]) -> str:
        """
        基於物件分佈和模式檢測場景類型

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            str: 檢測到的場景類型
        """
        try:
            # 預設場景類型
            scene_type = "intersection"

            # 計算物件數量
            object_counts = {}
            for obj in detected_objects:
                class_name = obj.get("class_name", "")
                if class_name not in object_counts:
                    object_counts[class_name] = 0
                object_counts[class_name] += 1

            # 人數統計
            people_count = object_counts.get("person", 0)

            # 交通工具統計
            car_count = object_counts.get("car", 0)
            bus_count = object_counts.get("bus", 0)
            truck_count = object_counts.get("truck", 0)
            total_vehicles = car_count + bus_count + truck_count

            # 簡單的場景類型檢測邏輯
            if people_count > 8 and total_vehicles < 2:
                scene_type = "pedestrian_crossing"
            elif people_count > 5 and total_vehicles > 2:
                scene_type = "busy_intersection"
            elif people_count < 3 and total_vehicles > 3:
                scene_type = "traffic_junction"

            return scene_type

        except Exception as e:
            self.logger.error(f"Scene type detection failed: {str(e)}")
            return "intersection"