File size: 14,434 Bytes
12d9ea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

import logging
import traceback
import numpy as np
from typing import Dict, List, Any, Optional

logger = logging.getLogger(__name__)

class PatternAnalyzer:
    """
    負責各種模式分析,包含交通流動、行人穿越、車輛分佈等的辨識
    專門處理動態區域和移動相關的區域分析
    """

    def __init__(self):
        """初始化模式分析器"""
        try:
            logger.info("PatternAnalyzer initialized successfully")
        except Exception as e:
            logger.error(f"Failed to initialize PatternAnalyzer: {str(e)}")
            logger.error(traceback.format_exc())
            raise

    def analyze_crossing_patterns(self, pedestrians: List[Dict], traffic_lights: List[Dict]) -> Dict:
        """
        Analyze pedestrian crossing patterns to identify crossing zones.
        若同一 region 中同時有行人與紅綠燈,則將兩者都放入該區域的 objects。

        Args:
            pedestrians: 行人物件列表(每個 obj 應包含 'class_id', 'region', 'confidence' 等)
            traffic_lights: 紅綠燈物件列表(每個 obj 應包含 'class_id', 'region', 'confidence' 等)

        Returns:
            crossing_zones: 字典,key 為 zone 名稱,value 包含 'region', 'objects', 'description'
        """
        try:
            crossing_zones = {}

            # 如果沒有任何行人,就不辨識任何 crossing zone
            if not pedestrians:
                return crossing_zones

            # (1) 按照 region 分組行人
            pedestrian_regions = {}
            for p in pedestrians:
                region = p["region"]
                pedestrian_regions.setdefault(region, []).append(p)

            # (2) 針對每個 region,看是否同時有紅綠燈
            # 建立一個對照表 mapping: region -> { "pedestrians": [...], "traffic_lights": [...] }
            combined_regions = {}
            for region, peds in pedestrian_regions.items():
                # 取得該 region 下所有紅綠燈
                tls_in_region = [t for t in traffic_lights if t["region"] == region]
                combined_regions[region] = {
                    "pedestrians": peds,
                    "traffic_lights": tls_in_region
                }

            # (3) 按照行人數量排序,找出前兩個需要建立 crossing zone 的 region
            sorted_regions = sorted(
                combined_regions.items(),
                key=lambda x: len(x[1]["pedestrians"]),
                reverse=True
            )

            # (4) 將前兩個 region 建立 Crossing Zone,objects 同時包含行人與紅綠燈
            for idx, (region, group) in enumerate(sorted_regions[:2]):
                peds = group["pedestrians"]
                tls  = group["traffic_lights"]
                has_nearby_signals = len(tls) > 0

                # 生成 zone_name(基於 region 方向 + idx 決定主/次 crossing)
                direction = self._get_directional_description_local(region)
                if direction and direction != "central":
                    zone_name = f"{direction} crossing area"
                else:
                    zone_name = "main crossing area" if idx == 0 else "secondary crossing area"

                # 組合 description
                description = f"Pedestrian crossing area with {len(peds)} "
                description += "person" if len(peds) == 1 else "people"
                if direction:
                    description += f" in {direction} direction"
                if has_nearby_signals:
                    description += " near traffic signals"

                # 將行人 + 同區紅綠燈一併放入 objects 
                obj_list = ["pedestrian"] * len(peds)
                if has_nearby_signals:
                    obj_list += ["traffic light"] * len(tls)

                crossing_zones[zone_name] = {
                    "region": region,
                    "objects": obj_list,
                    "description": description
                }

            return crossing_zones

        except Exception as e:
            logger.error(f"Error in analyze_crossing_patterns: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def analyze_traffic_zones(self, vehicles: List[Dict]) -> Dict:
        """
        分析車輛分布以識別具有方向感知的交通區域

        Args:
            vehicles: 車輛物件列表

        Returns:
            識別出的交通區域字典
        """
        try:
            traffic_zones = {}

            if not vehicles:
                return traffic_zones

            # 按區域分組車輛
            vehicle_regions = {}
            for v in vehicles:
                region = v["region"]
                if region not in vehicle_regions:
                    vehicle_regions[region] = []
                vehicle_regions[region].append(v)

            # 為有車輛的區域創建交通區域
            main_traffic_region = max(vehicle_regions.items(), key=lambda x: len(x[1]), default=(None, []))

            if main_traffic_region[0] is not None:
                region = main_traffic_region[0]
                vehicles_in_region = main_traffic_region[1]

                # 獲取車輛類型列表用於描述
                vehicle_types = [v["class_name"] for v in vehicles_in_region]
                unique_types = list(set(vehicle_types))

                # 獲取方向描述
                direction = self._get_directional_description_local(region)

                # 創建描述性區域
                traffic_zones["vehicle_zone"] = {
                    "region": region,
                    "objects": vehicle_types,
                    "description": f"Vehicle traffic area with {', '.join(unique_types[:3])}" +
                                (f" in {direction} area" if direction else "")
                }

                # 如果車輛分布在多個區域,創建次要區域
                if len(vehicle_regions) > 1:
                    # 獲取第二大車輛聚集區域
                    sorted_regions = sorted(vehicle_regions.items(), key=lambda x: len(x[1]), reverse=True)
                    if len(sorted_regions) > 1:
                        second_region, second_vehicles = sorted_regions[1]
                        direction = self._get_directional_description_local(second_region)
                        vehicle_types = [v["class_name"] for v in second_vehicles]
                        unique_types = list(set(vehicle_types))

                        traffic_zones["secondary_vehicle_zone"] = {
                            "region": second_region,
                            "objects": vehicle_types,
                            "description": f"Secondary traffic area with {', '.join(unique_types[:2])}" +
                                        (f" in {direction} direction" if direction else "")
                        }

            return traffic_zones

        except Exception as e:
            logger.error(f"Error analyzing traffic zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def analyze_aerial_traffic_patterns(self, vehicle_objs: List[Dict]) -> Dict:
        """
        分析空中視角的車輛交通模式

        Args:
            vehicle_objs: 車輛物件列表

        Returns:
            交通模式區域字典
        """
        try:
            zones = {}

            if not vehicle_objs:
                return zones

            # 將位置轉換為數組進行模式分析
            positions = np.array([obj["normalized_center"] for obj in vehicle_objs])

            if len(positions) >= 2:
                # 計算分布指標
                x_coords = positions[:, 0]
                y_coords = positions[:, 1]

                x_mean = np.mean(x_coords)
                y_mean = np.mean(y_coords)
                x_std = np.std(x_coords)
                y_std = np.std(y_coords)

                # 判斷車輛是否組織成車道
                if x_std < y_std * 0.5:
                    # 車輛垂直對齊 - 代表南北交通
                    zones["vertical_traffic_flow"] = {
                        "region": "central_vertical",
                        "objects": [obj["class_name"] for obj in vehicle_objs[:5]],
                        "description": "North-south traffic flow visible from aerial view"
                    }
                elif y_std < x_std * 0.5:
                    # 車輛水平對齊 - 代表東西交通
                    zones["horizontal_traffic_flow"] = {
                        "region": "central_horizontal",
                        "objects": [obj["class_name"] for obj in vehicle_objs[:5]],
                        "description": "East-west traffic flow visible from aerial view"
                    }
                else:
                    # 車輛多方向 - 代表十字路口
                    zones["intersection_traffic"] = {
                        "region": "central",
                        "objects": [obj["class_name"] for obj in vehicle_objs[:5]],
                        "description": "Multi-directional traffic at intersection visible from aerial view"
                    }

            return zones

        except Exception as e:
            logger.error(f"Error analyzing aerial traffic patterns: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def identify_park_recreational_zones(self, detected_objects: List[Dict]) -> Dict:
        """
        識別公園的休閒活動區域

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            休閒區域字典
        """
        try:
            zones = {}

            # 尋找休閒物件(運動球、風箏等)
            rec_items = []
            rec_regions = {}

            for obj in detected_objects:
                if obj["class_id"] in [32, 33, 34, 35, 38]:  # sports ball, kite, baseball bat, glove, tennis racket
                    region = obj["region"]
                    if region not in rec_regions:
                        rec_regions[region] = []
                    rec_regions[region].append(obj)
                    rec_items.append(obj["class_name"])

            if rec_items:
                main_rec_region = max(rec_regions.items(),
                                key=lambda x: len(x[1]),
                                default=(None, []))

                if main_rec_region[0] is not None:
                    zones["recreational_zone"] = {
                        "region": main_rec_region[0],
                        "objects": list(set(rec_items)),
                        "description": f"Recreational area with {', '.join(list(set(rec_items)))}"
                    }

            return zones

        except Exception as e:
            logger.error(f"Error identifying park recreational zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def identify_parking_zones(self, detected_objects: List[Dict]) -> Dict:
        """
        停車場的停車區域

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            停車區域字典
        """
        try:
            zones = {}

            # 尋找停放的汽車
            car_objs = [obj for obj in detected_objects if obj["class_id"] == 2]  # cars

            if len(car_objs) >= 3:
                # 檢查汽車是否按模式排列
                car_positions = [obj["normalized_center"] for obj in car_objs]

                # 通過分析垂直位置檢查行模式
                y_coords = [pos[1] for pos in car_positions]
                y_clusters = {}

                # 按相似y坐標分組汽車
                for i, y in enumerate(y_coords):
                    assigned = False
                    for cluster_y in y_clusters.keys():
                        if abs(y - cluster_y) < 0.1:  # 圖像高度的10%內
                            y_clusters[cluster_y].append(i)
                            assigned = True
                            break

                    if not assigned:
                        y_clusters[y] = [i]

                # 如果有行模式
                if max(len(indices) for indices in y_clusters.values()) >= 2:
                    zones["parking_row"] = {
                        "region": "central",
                        "objects": ["car"] * len(car_objs),
                        "description": f"Organized parking area with vehicles arranged in rows"
                    }
                else:
                    zones["parking_area"] = {
                        "region": "wide",
                        "objects": ["car"] * len(car_objs),
                        "description": f"Parking area with {len(car_objs)} vehicles"
                    }

            return zones

        except Exception as e:
            logger.error(f"Error identifying parking zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _get_directional_description_local(self, region: str) -> str:
        """
        本地方向描述方法
        將區域名稱轉換為方位描述(東西南北)

        Args:
            region: 區域名稱

        Returns:
            方位描述字串
        """
        try:
            region_lower = region.lower()

            if "top" in region_lower and "left" in region_lower:
                return "northwest"
            elif "top" in region_lower and "right" in region_lower:
                return "northeast"
            elif "bottom" in region_lower and "left" in region_lower:
                return "southwest"
            elif "bottom" in region_lower and "right" in region_lower:
                return "southeast"
            elif "top" in region_lower:
                return "north"
            elif "bottom" in region_lower:
                return "south"
            elif "left" in region_lower:
                return "west"
            elif "right" in region_lower:
                return "east"
            else:
                return "central"

        except Exception as e:
            logger.error(f"Error getting directional description for region '{region}': {str(e)}")
            return "central"