VisionScout / clip_zero_shot_classifier.py
DawnC's picture
Upload 59 files
e6a18b7 verified
raw
history blame
40.7 kB
import torch
import clip
from PIL import Image
import numpy as np
import logging
import traceback
from typing import List, Dict, Tuple, Optional, Union, Any
from clip_model_manager import CLIPModelManager
from landmark_data_manager import LandmarkDataManager
from image_analyzer import ImageAnalyzer
from confidence_manager import ConfidenceManager
from result_cache_manager import ResultCacheManager
class CLIPZeroShotClassifier:
"""
使用CLIP模型進行zero shot,專注於辨識世界知名地標。
作為YOLO的補充,處理YOLO無法辨識到的地標。
這是一個總窗口class,協調各個組件的工作以提供統一的對外接口。
"""
def __init__(self, model_name: str = "ViT-B/16", device: str = None):
"""
初始化CLIP零樣本分類器
Args:
model_name: CLIP模型名稱,默認為"ViT-B/16"
device: 運行設備,None則自動選擇
"""
self.logger = logging.getLogger(__name__)
# 初始化各個組件
self.clip_model_manager = CLIPModelManager(model_name, device)
self.landmark_data_manager = LandmarkDataManager()
self.image_analyzer = ImageAnalyzer()
self.confidence_manager = ConfidenceManager()
self.cache_manager = ResultCacheManager()
# 預計算地標文本特徵
self.landmark_text_features = None
self._precompute_landmark_features()
self.logger.info(f"Initializing CLIP Zero-Shot Landmark Classifier ({model_name}) on {self.clip_model_manager.get_device()}")
def _precompute_landmark_features(self):
"""
預計算地標文本特徵,提高批處理效率
"""
try:
if self.landmark_data_manager.is_landmark_enabled():
landmark_prompts = self.landmark_data_manager.get_landmark_prompts()
if landmark_prompts:
self.landmark_text_features = self.clip_model_manager.encode_text_batch(landmark_prompts)
self.logger.info(f"Precomputed text features for {len(landmark_prompts)} landmark prompts")
else:
self.logger.warning("No landmark prompts available for precomputation")
else:
self.logger.warning("Landmark data not enabled, skipping feature precomputation")
except Exception as e:
self.logger.error(f"Error precomputing landmark features: {e}")
self.logger.error(traceback.format_exc())
def set_batch_size(self, batch_size: int):
"""
設置批處理大小
Args:
batch_size: 新的批處理大小
"""
self.confidence_manager.set_batch_size(batch_size)
def adjust_confidence_threshold(self, detection_type: str, multiplier: float):
"""
調整特定檢測類型的置信度閾值乘數
Args
detection_type: 檢測類型 ('close_up', 'partial', 'distant', 'full_image')
multiplier: 置信度閾值乘數
"""
self.confidence_manager.adjust_confidence_threshold(detection_type, multiplier)
def classify_image_region(self,
image: Union[Image.Image, np.ndarray],
box: List[float],
threshold: float = 0.25,
detection_type: str = "close_up") -> Dict[str, Any]:
"""
對圖像的特定區域進行地標分類,具有增強的多尺度和部分識別能力
Args:
image: 原始圖像 (PIL Image 或 numpy數組)
box: 邊界框 [x1, y1, x2, y2]
threshold: 基礎分類置信度閾值
detection_type: 檢測類型,影響置信度調整
Returns:
Dict: 地標分類結果
"""
try:
if not self.landmark_data_manager.is_landmark_enabled():
return {"is_landmark": False, "confidence": 0.0}
# 確保圖像是PIL格式
if not isinstance(image, Image.Image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")
# 生成圖像區域的hash用於快取
image_hash = self.image_analyzer.get_image_hash(image)
region_key = self.cache_manager.get_region_cache_key(image_hash, tuple(box), detection_type)
# 檢查快取
cached_result = self.cache_manager.get_cached_result(region_key)
if cached_result is not None:
return cached_result
# 裁剪區域
x1, y1, x2, y2 = map(int, box)
cropped_image = image.crop((x1, y1, x2, y2))
enhanced_image = self.image_analyzer.enhance_features(cropped_image)
# 分析視角信息
viewpoint_info = self.image_analyzer.analyze_viewpoint(enhanced_image, self.clip_model_manager)
dominant_viewpoint = viewpoint_info["dominant_viewpoint"]
# 計算區域信息
region_width = x2 - x1
region_height = y2 - y1
image_width, image_height = image.size
# 根據區域大小判斷可能的檢測類型
if detection_type == "auto":
detection_type = self.confidence_manager.determine_detection_type_from_region(
region_width, region_height, image_width, image_height
)
# 根據視角調整檢測類型
detection_type = self.confidence_manager.adjust_detection_type_by_viewpoint(detection_type, dominant_viewpoint)
# 調整置信度閾值
adjusted_threshold = self.confidence_manager.calculate_adjusted_threshold(threshold, detection_type)
# 準備多尺度和縱橫比分析
scales = [1.0]
if detection_type in ["partial", "distant"]:
scales = [0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
if dominant_viewpoint in ["angled_view", "low_angle"]:
scales = [0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4]
aspect_ratios = [1.0, 0.8, 1.2]
if dominant_viewpoint in ["angled_view", "unique_feature"]:
aspect_ratios = [0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5]
best_result = {
"landmark_id": None,
"landmark_name": None,
"confidence": 0.0,
"is_landmark": False
}
# 多尺度和縱橫比分析
for scale in scales:
for aspect_ratio in aspect_ratios:
try:
# 縮放裁剪區域
current_width, current_height = cropped_image.size
if aspect_ratio != 1.0:
new_width = int(current_width * scale * (1/aspect_ratio)**0.5)
new_height = int(current_height * scale * aspect_ratio**0.5)
else:
new_width = int(current_width * scale)
new_height = int(current_height * scale)
new_width = max(1, new_width)
new_height = max(1, new_height)
scaled_image = cropped_image.resize((new_width, new_height), Image.LANCZOS)
# 預處理並獲取特徵
image_input = self.clip_model_manager.preprocess_image(scaled_image)
image_features = self.clip_model_manager.encode_image(image_input)
# 計算相似度
similarity = self.clip_model_manager.calculate_similarity(image_features, self.landmark_text_features)
# 找到最佳匹配
best_idx = similarity[0].argmax().item()
best_score = similarity[0][best_idx]
# 如果當前尺度結果更好,則更新
if best_score > best_result["confidence"]:
landmark_id, landmark_info = self.landmark_data_manager.get_landmark_by_index(best_idx)
if landmark_id:
# 先從 LandmarkDataManager 拿 location
loc = landmark_info.get("location", "")
# 如果 loc 為空,就從全域 ALL_LANDMARKS 補上
if not loc and landmark_id in ALL_LANDMARKS:
loc = ALL_LANDMARKS[landmark_id].get("location", "")
best_result = {
"landmark_id": landmark_id,
"landmark_name": landmark_info.get("name", "Unknown"),
"location": loc or "Unknown Location",
"confidence": float(best_score),
"is_landmark": best_score >= adjusted_threshold,
"scale_used": scale,
"aspect_ratio_used": aspect_ratio,
"viewpoint": dominant_viewpoint
}
# 添加額外可用信息
for key in ["year_built", "architectural_style", "significance"]:
if key in landmark_info:
best_result[key] = landmark_info[key]
except Exception as e:
self.logger.error(f"Error in scale analysis: {e}")
continue
# 應用地標類型閾值調整
if best_result["landmark_id"]:
landmark_type = self.landmark_data_manager.determine_landmark_type(best_result["landmark_id"])
final_threshold = self.confidence_manager.calculate_final_threshold(adjusted_threshold, detection_type, landmark_type)
best_result["is_landmark"] = self.confidence_manager.evaluate_confidence(best_result["confidence"], final_threshold)
best_result["landmark_type"] = landmark_type
best_result["threshold_applied"] = final_threshold
# 快取結果
self.cache_manager.set_cached_result(region_key, best_result)
return best_result
except Exception as e:
self.logger.error(f"Error in classify_image_region: {e}")
self.logger.error(traceback.format_exc())
return {"is_landmark": False, "confidence": 0.0}
def classify_batch_regions(self,
image: Union[Image.Image, np.ndarray],
boxes: List[List[float]],
threshold: float = 0.28) -> List[Dict[str, Any]]:
"""
批量處理多個圖像區域,提高效率
Args:
image: 原始圖像
boxes: 邊界框列表
threshold: 置信度閾值
Returns:
List[Dict]: 分類結果列表
"""
try:
if not self.landmark_data_manager.is_landmark_enabled() or self.landmark_text_features is None:
return [{"is_landmark": False, "confidence": 0.0} for _ in boxes]
# 確保圖像是PIL格式
if not isinstance(image, Image.Image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")
if not boxes:
return []
# 批量處理所有區域
batch_features = self.clip_model_manager.batch_process_regions(image, boxes)
# 計算相似度
similarity = self.clip_model_manager.calculate_similarity(batch_features, self.landmark_text_features)
# 處理每個區域的結果
results = []
for i, sim in enumerate(similarity):
best_idx = sim.argmax().item()
best_score = sim[best_idx]
if best_score >= threshold:
landmark_id, landmark_info = self.landmark_data_manager.get_landmark_by_index(best_idx)
if landmark_id:
# 如果landmark_info["location"] 為空,則從 ALL_LANDMARKS 補
loc = landmark_info.get("location", "")
if not loc and landmark_id in ALL_LANDMARKS:
loc = ALL_LANDMARKS[landmark_id].get("location", "")
results.append({
"landmark_id": landmark_id,
"landmark_name": landmark_info.get("name", "Unknown"),
"location": loc or "Unknown Location",
"confidence": float(best_score),
"is_landmark": True,
"box": boxes[i]
})
else:
results.append({
"landmark_id": None,
"landmark_name": None,
"confidence": float(best_score),
"is_landmark": False,
"box": boxes[i]
})
else:
results.append({
"landmark_id": None,
"landmark_name": None,
"confidence": float(best_score),
"is_landmark": False,
"box": boxes[i]
})
return results
except Exception as e:
self.logger.error(f"Error in classify_batch_regions: {e}")
self.logger.error(traceback.format_exc())
return [{"is_landmark": False, "confidence": 0.0} for _ in boxes]
def search_entire_image(self,
image: Union[Image.Image, np.ndarray],
threshold: float = 0.35,
detailed_analysis: bool = False) -> Dict[str, Any]:
"""
檢查整張圖像是否包含地標,具有增強的分析能力
Args:
image: 原始圖像
threshold: 置信度閾值
detailed_analysis: 是否進行詳細分析,包括多區域檢測
Returns:
Dict: 地標分類結果
"""
try:
if not self.landmark_data_manager.is_landmark_enabled() or self.landmark_text_features is None:
return {"is_landmark": False, "confidence": 0.0}
# 確保圖像是PIL格式
if not isinstance(image, Image.Image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")
# 檢查cache
image_hash = self.image_analyzer.get_image_hash(image)
image_key = self.cache_manager.get_image_cache_key(image_hash, "entire_image", detailed_analysis)
cached_result = self.cache_manager.get_cached_result(image_key)
if cached_result is not None:
return cached_result
# 調整閾值
adjusted_threshold = self.confidence_manager.calculate_adjusted_threshold(threshold, "full_image")
# 預處理並獲取特徵
image_input = self.clip_model_manager.preprocess_image(image)
image_features = self.clip_model_manager.encode_image(image_input)
# calculate相似度
similarity = self.clip_model_manager.calculate_similarity(image_features, self.landmark_text_features)
# 找到最佳匹配
best_idx = similarity[0].argmax().item()
best_score = similarity[0][best_idx]
# 獲取top3地標
top_indices = similarity[0].argsort()[-3:][::-1]
top_landmarks = []
for idx in top_indices:
score = similarity[0][idx]
landmark_id, landmark_info = self.landmark_data_manager.get_landmark_by_index(idx)
if landmark_id:
# 補 location
loc_top = landmark_info.get("location", "")
if not loc_top and landmark_id in ALL_LANDMARKS:
loc_top = ALL_LANDMARKS[landmark_id].get("location", "")
landmark_result = {
"landmark_id": landmark_id,
"landmark_name": landmark_info.get("name", "Unknown"),
"location": loc_top or "Unknown Location",
"confidence": float(score)
}
# 加額外可用信息
for key in ["year_built", "architectural_style", "significance"]:
if key in landmark_info:
landmark_result[key] = landmark_info[key]
top_landmarks.append(landmark_result)
# main result
result = {}
if best_score >= adjusted_threshold:
landmark_id, landmark_info = self.landmark_data_manager.get_landmark_by_index(best_idx)
if landmark_id:
# 應用地標類型特定閾值
landmark_type = self.landmark_data_manager.determine_landmark_type(landmark_id)
final_threshold = self.confidence_manager.calculate_final_threshold(adjusted_threshold, "full_image", landmark_type)
if self.confidence_manager.evaluate_confidence(best_score, final_threshold):
# 補 location
loc_main = landmark_info.get("location", "")
if not loc_main and landmark_id in ALL_LANDMARKS:
loc_main = ALL_LANDMARKS[landmark_id].get("location", "")
result = {
"landmark_id": landmark_id,
"landmark_name": landmark_info.get("name", "Unknown"),
"location": loc_main or "Unknown Location",
"confidence": float(best_score),
"is_landmark": True,
"landmark_type": landmark_type,
"top_landmarks": top_landmarks
}
# 添加額外可用信息
for key in ["year_built", "architectural_style", "significance"]:
if key in landmark_info:
result[key] = landmark_info[key]
else:
result = {
"landmark_id": None,
"landmark_name": None,
"confidence": float(best_score),
"is_landmark": False,
"top_landmarks": top_landmarks
}
else:
result = {
"landmark_id": None,
"landmark_name": None,
"confidence": float(best_score),
"is_landmark": False,
"top_landmarks": top_landmarks
}
# 詳細分析
if detailed_analysis and result.get("is_landmark", False):
width, height = image.size
regions = [
[width * 0.25, height * 0.25, width * 0.75, height * 0.75],
[0, 0, width * 0.5, height],
[width * 0.5, 0, width, height],
[0, 0, width, height * 0.5],
[0, height * 0.5, width, height]
]
region_results = []
for i, box in enumerate(regions):
region_result = self.classify_image_region(
image,
box,
threshold=threshold * 0.9,
detection_type="partial"
)
if region_result["is_landmark"]:
region_result["region_name"] = ["center", "left", "right", "top", "bottom"][i]
region_results.append(region_result)
if region_results:
result["region_analyses"] = region_results
# 快取結果
self.cache_manager.set_cached_result(image_key, result)
return result
except Exception as e:
self.logger.error(f"Error in search_entire_image: {e}")
self.logger.error(traceback.format_exc())
return {"is_landmark": False, "confidence": 0.0}
def intelligent_landmark_search(self,
image: Union[Image.Image, np.ndarray],
yolo_boxes: Optional[List[List[float]]] = None,
base_threshold: float = 0.25) -> Dict[str, Any]:
"""
對圖像進行地標搜索,綜合整張圖像分析和區域分析
Args:
image: 原始圖像
yolo_boxes: YOLO檢測到的邊界框 (可選)
base_threshold: 基礎置信度閾值
Returns:
Dict: 包含所有檢測結果的綜合分析
"""
try:
if not self.landmark_data_manager.is_landmark_enabled():
return {
"full_image_analysis": {},
"is_landmark_scene": False,
"detected_landmarks": []
}
# 確保圖像是PIL格式
if not isinstance(image, Image.Image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")
# 調整閾值
actual_threshold = base_threshold * 0.85 if yolo_boxes is None or len(yolo_boxes) == 0 else base_threshold
# 首先對整張圖像進行分析
full_image_result = self.search_entire_image(
image,
threshold=actual_threshold,
detailed_analysis=True
)
# 如果沒有YOLO框且全圖分析未發現地標,進行金字塔分析
if (yolo_boxes is None or len(yolo_boxes) == 0) and (not full_image_result or not full_image_result.get("is_landmark", False)):
self.logger.info("No YOLO boxes provided, attempting multi-scale pyramid analysis")
pyramid_results = self.image_analyzer.perform_pyramid_analysis(
image,
self.clip_model_manager,
self.landmark_data_manager,
levels=4,
base_threshold=actual_threshold,
aspect_ratios=[1.0, 0.75, 1.5, 0.5, 2.0]
)
if pyramid_results and pyramid_results.get("is_landmark", False) and pyramid_results.get("best_result", {}).get("confidence", 0) > actual_threshold:
if not full_image_result or not full_image_result.get("is_landmark", False):
full_image_result = {
"is_landmark": True,
"landmark_id": pyramid_results["best_result"]["landmark_id"],
"landmark_name": pyramid_results["best_result"]["landmark_name"],
"confidence": pyramid_results["best_result"]["confidence"],
"location": pyramid_results["best_result"].get("location", "Unknown Location")
}
self.logger.info(f"Pyramid analysis detected landmark: {pyramid_results['best_result']['landmark_name']} with confidence {pyramid_results['best_result']['confidence']:.3f}")
# 初始化結果dict
result = {
"full_image_analysis": full_image_result if full_image_result else {},
"is_landmark_scene": False,
"detected_landmarks": []
}
# 處理上下文感知比較
if full_image_result and "top_landmarks" in full_image_result and len(full_image_result["top_landmarks"]) >= 2:
top_landmarks = full_image_result["top_landmarks"]
if len(top_landmarks) >= 2 and abs(top_landmarks[0]["confidence"] - top_landmarks[1]["confidence"]) < 0.1:
architectural_analysis = self.image_analyzer.analyze_architectural_features(image, self.clip_model_manager)
for i, landmark in enumerate(top_landmarks[:2]):
if i >= len(top_landmarks):
continue
adjusted_confidence = self.confidence_manager.apply_architectural_boost(
landmark["confidence"],
architectural_analysis,
landmark.get("landmark_id", "")
)
if adjusted_confidence != landmark["confidence"]:
top_landmarks[i]["confidence"] = adjusted_confidence
# 重新排序
top_landmarks.sort(key=lambda x: x["confidence"], reverse=True)
full_image_result["top_landmarks"] = top_landmarks
if top_landmarks:
full_image_result["landmark_id"] = top_landmarks[0]["landmark_id"]
full_image_result["landmark_name"] = top_landmarks[0]["landmark_name"]
full_image_result["confidence"] = top_landmarks[0]["confidence"]
full_image_result["location"] = top_landmarks[0].get("location", "Unknown Location")
# 處理全圖結果
if full_image_result and full_image_result.get("is_landmark", False):
result["is_landmark_scene"] = True
landmark_id = full_image_result.get("landmark_id", "unknown")
landmark_specific_info = self.landmark_data_manager.extract_landmark_specific_info(landmark_id)
landmark_info = {
"landmark_id": landmark_id,
"landmark_name": full_image_result.get("landmark_name", "Unknown Landmark"),
"confidence": full_image_result.get("confidence", 0.0),
"location": full_image_result.get("location", "Unknown Location"),
"region_type": "full_image",
"box": [0, 0, getattr(image, 'width', 0), getattr(image, 'height', 0)]
}
landmark_info.update(landmark_specific_info)
if landmark_specific_info.get("landmark_name"):
landmark_info["landmark_name"] = landmark_specific_info["landmark_name"]
result["detected_landmarks"].append(landmark_info)
if landmark_specific_info.get("has_specific_activities", False):
result["primary_landmark_activities"] = landmark_specific_info.get("landmark_specific_activities", [])
self.logger.info(f"Set primary landmark activities: {len(result['primary_landmark_activities'])} activities for {landmark_info['landmark_name']}")
# 處理YOLO邊界框
if yolo_boxes and len(yolo_boxes) > 0:
for box in yolo_boxes:
try:
box_result = self.classify_image_region(
image,
box,
threshold=base_threshold,
detection_type="auto"
)
if box_result and box_result.get("is_landmark", False):
is_duplicate = False
for existing in result["detected_landmarks"]:
if existing.get("landmark_id") == box_result.get("landmark_id"):
if box_result.get("confidence", 0) > existing.get("confidence", 0):
existing.update({
"confidence": box_result.get("confidence", 0),
"region_type": "yolo_box",
"box": box
})
is_duplicate = True
break
if not is_duplicate:
result["detected_landmarks"].append({
"landmark_id": box_result.get("landmark_id", "unknown"),
"landmark_name": box_result.get("landmark_name", "Unknown Landmark"),
"confidence": box_result.get("confidence", 0.0),
"location": box_result.get("location", "Unknown Location"),
"region_type": "yolo_box",
"box": box
})
except Exception as e:
self.logger.error(f"Error in analyzing YOLO box: {e}")
continue
# 網格搜索(如果需要)
should_do_grid_search = (
len(result["detected_landmarks"]) == 0 or
max([landmark.get("confidence", 0) for landmark in result["detected_landmarks"]], default=0) < 0.5
)
if should_do_grid_search:
try:
width, height = getattr(image, 'size', (getattr(image, 'width', 0), getattr(image, 'height', 0)))
if not isinstance(width, (int, float)) or width <= 0:
width = getattr(image, 'width', 0)
if not isinstance(height, (int, float)) or height <= 0:
height = getattr(image, 'height', 0)
if width > 0 and height > 0:
grid_boxes = []
for i in range(5):
for j in range(5):
grid_boxes.append([
width * (j/5), height * (i/5),
width * ((j+1)/5), height * ((i+1)/5)
])
for box in grid_boxes:
try:
grid_result = self.classify_image_region(
image,
box,
threshold=base_threshold * 0.9,
detection_type="partial"
)
if grid_result and grid_result.get("is_landmark", False):
is_duplicate = False
for existing in result["detected_landmarks"]:
if existing.get("landmark_id") == grid_result.get("landmark_id"):
is_duplicate = True
break
if not is_duplicate:
result["detected_landmarks"].append({
"landmark_id": grid_result.get("landmark_id", "unknown"),
"landmark_name": grid_result.get("landmark_name", "Unknown Landmark"),
"confidence": grid_result.get("confidence", 0.0),
"location": grid_result.get("location", "Unknown Location"),
"region_type": "grid",
"box": box
})
except Exception as e:
self.logger.error(f"Error in analyzing grid region: {e}")
continue
except Exception as e:
self.logger.error(f"Error in grid search: {e}")
self.logger.error(traceback.format_exc())
# 按置信度排序檢測結果
result["detected_landmarks"].sort(key=lambda x: x.get("confidence", 0), reverse=True)
# 更新整體場景類型判斷
if len(result["detected_landmarks"]) > 0:
result["is_landmark_scene"] = True
result["primary_landmark"] = result["detected_landmarks"][0]
if full_image_result and "clip_analysis" in full_image_result:
result["clip_analysis_on_full_image"] = full_image_result["clip_analysis"]
return result
except Exception as e:
self.logger.error(f"Error in intelligent_landmark_search: {e}")
self.logger.error(traceback.format_exc())
return {
"full_image_analysis": {},
"is_landmark_scene": False,
"detected_landmarks": []
}
def enhanced_landmark_detection(self,
image: Union[Image.Image, np.ndarray],
threshold: float = 0.3) -> Dict[str, Any]:
"""
使用多種分析技術進行增強地標檢測
Args:
image: 輸入圖像
threshold: 基礎置信度閾值
Returns:
Dict: 綜合地標檢測結果
"""
try:
if not self.landmark_data_manager.is_landmark_enabled():
return {"is_landmark_scene": False, "detected_landmarks": []}
# 確保圖像是PIL格式
if not isinstance(image, Image.Image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")
# 1: 分析視角以調整檢測參數
viewpoint_info = self.image_analyzer.analyze_viewpoint(image, self.clip_model_manager)
viewpoint = viewpoint_info["dominant_viewpoint"]
# 根據視角調整閾值
if viewpoint == "distant":
adjusted_threshold = threshold * 0.7
elif viewpoint == "close_up":
adjusted_threshold = threshold * 1.1
else:
adjusted_threshold = threshold
# 2: 執行多尺度金字塔分析
pyramid_results = self.image_analyzer.perform_pyramid_analysis(
image,
self.clip_model_manager,
self.landmark_data_manager,
levels=3,
base_threshold=adjusted_threshold
)
# 3: 執行基於網格的區域分析
grid_results = []
width, height = image.size
# 根據視角創建自適應網格
if viewpoint == "distant":
grid_size = 3
elif viewpoint == "close_up":
grid_size = 5
else:
grid_size = 4
# 生成網格區域
for i in range(grid_size):
for j in range(grid_size):
box = [
width * (j/grid_size),
height * (i/grid_size),
width * ((j+1)/grid_size),
height * ((i+1)/grid_size)
]
region_result = self.classify_image_region(
image,
box,
threshold=adjusted_threshold,
detection_type="auto"
)
if region_result["is_landmark"]:
region_result["grid_position"] = (i, j)
grid_results.append(region_result)
# 4: 交叉驗證並合併結果
all_detections = []
# 添加金字塔結果
if pyramid_results["is_landmark"] and pyramid_results["best_result"]:
all_detections.append({
"source": "pyramid",
"landmark_id": pyramid_results["best_result"]["landmark_id"],
"landmark_name": pyramid_results["best_result"]["landmark_name"],
"confidence": pyramid_results["best_result"]["confidence"],
"scale_factor": pyramid_results["best_result"].get("scale_factor", 1.0)
})
# 添加網格結果
for result in grid_results:
all_detections.append({
"source": "grid",
"landmark_id": result["landmark_id"],
"landmark_name": result["landmark_name"],
"confidence": result["confidence"],
"grid_position": result.get("grid_position", (0, 0))
})
# 搜索整張圖像
full_image_result = self.search_entire_image(image, threshold=adjusted_threshold)
if full_image_result and full_image_result.get("is_landmark", False):
all_detections.append({
"source": "full_image",
"landmark_id": full_image_result["landmark_id"],
"landmark_name": full_image_result["landmark_name"],
"confidence": full_image_result["confidence"]
})
# 按地標ID分組並計算總體置信度
landmark_groups = {}
for detection in all_detections:
landmark_id = detection["landmark_id"]
if landmark_id not in landmark_groups:
landmark_groups[landmark_id] = {
"landmark_id": landmark_id,
"landmark_name": detection["landmark_name"],
"detections": [],
"sources": set()
}
landmark_groups[landmark_id]["detections"].append(detection)
landmark_groups[landmark_id]["sources"].add(detection["source"])
# 計算每個地標的總體置信度
for landmark_id, group in landmark_groups.items():
detections = group["detections"]
# 基礎置信度是任何來源的最大置信度
max_confidence = max(d["confidence"] for d in detections)
# 多來源檢測獎勵
source_count = len(group["sources"])
source_bonus = min(0.15, (source_count - 1) * 0.05)
# 一致性獎勵
detection_count = len(detections)
consistency_bonus = min(0.1, (detection_count - 1) * 0.02)
# 計算最終置信度
aggregate_confidence = min(1.0, max_confidence + source_bonus + consistency_bonus)
group["confidence"] = aggregate_confidence
group["detection_count"] = detection_count
group["source_count"] = source_count
# 照信心度排序地標
sorted_landmarks = sorted(
landmark_groups.values(),
key=lambda x: x["confidence"],
reverse=True
)
return {
"is_landmark_scene": len(sorted_landmarks) > 0,
"detected_landmarks": sorted_landmarks,
"viewpoint_info": viewpoint_info,
"primary_landmark": sorted_landmarks[0] if sorted_landmarks else None
}
except Exception as e:
self.logger.error(f"Error in enhanced_landmark_detection: {e}")
self.logger.error(traceback.format_exc())
return {"is_landmark_scene": False, "detected_landmarks": []}