VisionScout / enhanced_scene_describer.py
DawnC's picture
Upload 59 files
e6a18b7 verified
raw
history blame
57.8 kB
import os
import re
import json
import logging
import random
import numpy as np
from typing import Dict, List, Tuple, Any, Optional
from scene_type import SCENE_TYPES
from scene_detail_templates import SCENE_DETAIL_TEMPLATES
from object_template_fillers import OBJECT_TEMPLATE_FILLERS
from lighting_conditions import LIGHTING_CONDITIONS
from viewpoint_templates import VIEWPOINT_TEMPLATES
from cultural_templates import CULTURAL_TEMPLATES
from confidence_templates import CONFIDENCE_TEMPLATES
from landmark_data import ALL_LANDMARKS
from region_analyzer import RegionAnalyzer
from viewpoint_detector import ViewpointDetector, ViewpointDetectionError
from template_manager import TemplateManager, TemplateLoadingError, TemplateFillError
from object_description_generator import ObjectDescriptionGenerator, ObjectDescriptionError
from cultural_context_analyzer import CulturalContextAnalyzer, CulturalContextError
from text_formatter import TextFormatter, TextFormattingError
class EnhancedSceneDescriberError(Exception):
"""場景描述生成過程中的自定義異常"""
pass
class EnhancedSceneDescriber:
"""
增強場景描述器 - 提供詳細自然語言場景描述的主要窗口,其他相關class匯集於此
此class會協調多個專門組件來生成高質量的場景描述,包括視角檢測、
模板管理、物件描述、文化語境分析和文本格式化。
"""
def __init__(self, templates_db: Optional[Dict] = None, scene_types: Optional[Dict] = None, spatial_analyzer_instance: Optional[Any] = None):
"""
初始化增強場景描述器
Args:
templates_db: 可選的自定義模板數據庫
scene_types: 場景類型定義字典
spatial_analyzer_instance: 空間分析器實例(保持兼容性)
"""
self.logger = logging.getLogger(self.__class__.__name__)
self.logger.setLevel(logging.INFO)
# 如果沒有logger,就加一個
if not self.logger.hasHandlers():
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
self.logger.addHandler(handler)
try:
# 載入場景類型定義
self.scene_types = scene_types or self._load_default_scene_types()
# 初始化子組件
self._initialize_components(templates_db)
# 保存空間分析器實例以保持兼容性
self.spatial_analyzer_instance = spatial_analyzer_instance
self.logger.info("EnhancedSceneDescriber initialized successfully with %d scene types",
len(self.scene_types))
except Exception as e:
error_msg = f"Failed to initialize EnhancedSceneDescriber: {str(e)}"
self.logger.error(f"{error_msg}\n{e.__class__.__name__}: {str(e)}")
raise EnhancedSceneDescriberError(error_msg) from e
def _load_default_scene_types(self) -> Dict:
"""
載入默認場景類型
Returns:
Dict: 場景類型定義
"""
try:
return SCENE_TYPES
except Exception as e:
self.logger.error(f"Failed to import SCENE_TYPES: {str(e)}")
return {} # 返回空字典
def _initialize_components(self, templates_db: Optional[Dict]):
"""
初始化所有子組件
Args:
templates_db: 可選的模板數據庫
"""
try:
# 初始化視角檢測器
self.viewpoint_detector = ViewpointDetector()
# 初始化區域分析器
self.region_analyzer = RegionAnalyzer()
# 初始化模板管理器
self.template_manager = TemplateManager(custom_templates_db=templates_db)
# 初始化物件描述生成器,傳入區域分析器
self.object_description_generator = ObjectDescriptionGenerator(
region_analyzer=self.region_analyzer
)
# 初始化文化語境分析器
self.cultural_context_analyzer = CulturalContextAnalyzer()
# 初始化文本格式化器
self.text_formatter = TextFormatter()
self.logger.debug("All components initialized successfully")
except Exception as e:
error_msg = f"Component initialization failed: {str(e)}"
self.logger.error(error_msg)
# 初始化基本組件而不是拋出異常
self._initialize_fallback_components()
def generate_description(self, scene_type: str, detected_objects: List[Dict], confidence: float,
lighting_info: Dict, functional_zones: List[str], enable_landmark: bool = True,
scene_scores: Optional[Dict] = None, spatial_analysis: Optional[Dict] = None,
image_dimensions: Optional[Tuple[int, int]] = None, # 改為 Tuple
places365_info: Optional[Dict] = None,
object_statistics: Optional[Dict] = None) -> str:
try:
traffic_list = [obj for obj in detected_objects if obj.get("class_name", "") == "traffic light"]
# print(f"[DEBUG] generate_description 一開始接收到的 traffic light 數量: {len(traffic_list)}") # 原始的 print
self.logger.debug(f"Initial traffic light count in generate_description: {len(traffic_list)}") # 改用 logger
# for idx, tl in enumerate(traffic_list): # 這部分 log 可能過於詳細,先註解
# self.logger.debug(f" idx={idx}, confidence={tl.get('confidence', 0):.4f}, bbox={tl.get('bbox')}, region={tl.get('region')}")
if scene_type == "unknown" or confidence < 0.4:
generic_desc = self._generate_generic_description(detected_objects, lighting_info)
return self.text_formatter.format_final_description(generic_desc)
current_detected_objects = detected_objects
if not enable_landmark:
current_detected_objects = [obj for obj in detected_objects if not obj.get("is_landmark", False)]
places365_context = ""
if places365_info and places365_info.get('confidence', 0) > 0.3:
scene_label = places365_info.get('scene_label', '')
attributes = places365_info.get('attributes', [])
is_indoor = places365_info.get('is_indoor', None)
if scene_label:
places365_context = f"Scene context: {scene_label}"
if attributes:
places365_context += f" with characteristics: {', '.join(attributes[:3])}"
if is_indoor is not None:
indoor_outdoor = "indoor" if is_indoor else "outdoor"
places365_context += f" ({indoor_outdoor} environment)"
self.logger.debug(f"Enhanced description incorporating Places365 context: {places365_context}")
landmark_objects_in_scene = [obj for obj in current_detected_objects if obj.get("is_landmark", False)]
has_landmark_in_scene = len(landmark_objects_in_scene) > 0
if enable_landmark and (scene_type in ["tourist_landmark", "natural_landmark", "historical_monument"] or has_landmark_in_scene):
landmark_desc = self._generate_landmark_description(
scene_type, current_detected_objects, confidence,
lighting_info, functional_zones, landmark_objects_in_scene
)
return self.text_formatter.format_final_description(landmark_desc)
viewpoint = self.viewpoint_detector.detect_viewpoint(current_detected_objects)
current_scene_type = scene_type
if viewpoint == "aerial":
if "intersection" in current_scene_type.lower() or self._is_intersection(current_detected_objects):
current_scene_type = "aerial_view_intersection"
elif any(keyword in current_scene_type.lower() for keyword in ["commercial", "shopping", "retail"]):
current_scene_type = "aerial_view_commercial_area"
elif any(keyword in current_scene_type.lower() for keyword in ["plaza", "square"]):
current_scene_type = "aerial_view_plaza"
else:
current_scene_type = "aerial_view_general"
current_scene_type = self._sanitize_scene_type_for_description(current_scene_type)
# 偵測文化背景資訊
cultural_context = None
if viewpoint != "aerial":
cultural_context = self.cultural_context_analyzer.detect_cultural_context(current_scene_type, current_detected_objects)
# 設定基礎描述
base_description = "A scene"
if viewpoint == "aerial":
if current_scene_type in self.scene_types: # 確保 self.scene_types 已有
base_description = self.scene_types.get(current_scene_type, {}).get("description", "An aerial view showing the layout and movement patterns from above")
else:
base_description = "An aerial view showing the layout and movement patterns from above"
elif current_scene_type in self.scene_types: # 確保 self.scene_types 已有
base_description = self.scene_types.get(current_scene_type, {}).get("description", "A scene")
# 假設 template_manager 內部可以處理 List[str] 的 functional_zones
selected_template = self.template_manager.get_template_by_scene_type(
scene_type=current_scene_type,
detected_objects=current_detected_objects,
functional_zones=functional_zones or [] # 傳入 List[str]
)
# 用於 fill_template 中的某些佔位符
processed_functional_zones = {}
if functional_zones:
if isinstance(functional_zones, dict): # 如果外部傳入的就是dict
processed_functional_zones = functional_zones
elif isinstance(functional_zones, list): # 如果是 list of strings
processed_functional_zones = {f"zone_{i}": {"description": zone_desc} for i, zone_desc in enumerate(functional_zones)}
# 組織場景資料
scene_data = {
"detected_objects": current_detected_objects,
"functional_zones": processed_functional_zones, # 傳入處理過的字典
"scene_type": current_scene_type,
"object_statistics": object_statistics or {},
"lighting_info": lighting_info,
"spatial_analysis": spatial_analysis,
"places365_info": places365_info
}
# 應用模板產生核心場景描述
core_scene_details = self.template_manager.apply_template(selected_template, scene_data)
# 組合基礎描述與核心場景細節
description = base_description
if core_scene_details and core_scene_details.strip():
cleaned_scene_details = self._validate_and_clean_scene_details(core_scene_details)
if base_description.lower() == "a scene" and len(cleaned_scene_details) > len(base_description):
description = cleaned_scene_details
else:
description = self.text_formatter.smart_append(description, cleaned_scene_details)
elif not core_scene_details and not description: # 如果兩者都為空
description = self._generate_generic_description(current_detected_objects, lighting_info)
# 添加次要描述資訊
if current_scene_type in self.scene_types and "secondary_description" in self.scene_types[current_scene_type]:
secondary_desc = self.scene_types[current_scene_type]["secondary_description"]
if secondary_desc:
description = self.text_formatter.smart_append(description, secondary_desc)
# 處理人物相關的描述
people_objs = [obj for obj in current_detected_objects if obj.get("class_id") == 0]
if people_objs:
people_count = len(people_objs)
if people_count == 1: people_phrase = "a single person"
elif 1 < people_count <= 3: people_phrase = f"{people_count} people"
elif 3 < people_count <= 7: people_phrase = "several people"
else: people_phrase = "multiple people"
if not any(p_word in description.lower() for p_word in ["person", "people", "pedestrian"]):
description = self.text_formatter.smart_append(description, f"The scene includes {people_phrase}.")
# 添加文化背景元素(非空中視角)
if cultural_context and viewpoint != "aerial":
cultural_elements = self.cultural_context_analyzer.generate_cultural_elements(cultural_context)
if cultural_elements:
description = self.text_formatter.smart_append(description, cultural_elements)
# 處理光照條件描述
lighting_description_text = ""
if lighting_info and "time_of_day" in lighting_info:
lighting_type = lighting_info["time_of_day"]
lighting_desc_template = self.template_manager.get_lighting_template(lighting_type)
if lighting_desc_template: lighting_description_text = lighting_desc_template
if lighting_description_text and lighting_description_text.lower() not in description.lower():
description = self.text_formatter.smart_append(description, lighting_description_text)
# 添加視角特定的觀察描述
if viewpoint != "eye_level":
viewpoint_template = self.template_manager.get_viewpoint_template(viewpoint)
prefix = viewpoint_template.get('prefix', '')
observation_template = viewpoint_template.get("observation", "")
scene_elements_for_vp = "the overall layout and objects"
if viewpoint == "aerial": scene_elements_for_vp = "crossing patterns and general layout"
viewpoint_observation_text = observation_template.format(scene_elements=scene_elements_for_vp)
full_viewpoint_text = ""
if prefix:
full_viewpoint_text = prefix.strip() + " "
if viewpoint_observation_text and viewpoint_observation_text[0].islower():
full_viewpoint_text += viewpoint_observation_text
elif viewpoint_observation_text:
full_viewpoint_text = prefix + (viewpoint_observation_text[0].lower() + viewpoint_observation_text[1:] if description else viewpoint_observation_text)
elif viewpoint_observation_text:
full_viewpoint_text = viewpoint_observation_text[0].upper() + viewpoint_observation_text[1:]
if full_viewpoint_text and full_viewpoint_text.lower() not in description.lower():
description = self.text_formatter.smart_append(description, full_viewpoint_text)
# 需要轉換或調整 describe_functional_zones
if functional_zones and len(functional_zones) > 0:
if isinstance(functional_zones, dict):
zones_desc_text = self.object_description_generator.describe_functional_zones(functional_zones)
else: # 如果是 list of strings
temp_zones_dict = {f"area_{i}": {"description": desc} for i, desc in enumerate(functional_zones)}
zones_desc_text = self.object_description_generator.describe_functional_zones(temp_zones_dict)
if zones_desc_text:
description = self.text_formatter.smart_append(description, zones_desc_text)
# 避免重複提到
if hasattr(self.text_formatter, 'deduplicate_sentences_in_description'):
deduplicated_description = self.text_formatter.deduplicate_sentences_in_description(description)
self.logger.info(f"Description before pre-LLM deduplication (len {len(description)}): '{description[:150]}...'")
self.logger.info(f"Description after pre-LLM deduplication (len {len(deduplicated_description)}): '{deduplicated_description[:150]}...'")
description = deduplicated_description # 更新 description 為去除重複後的版本
else:
self.logger.warning("TextFormatter does not have 'deduplicate_sentences_in_description'. Skipping pre-LLM deduplication of the internally generated description.")
# 格式化最終描述
final_formatted_description = self.text_formatter.format_final_description(description)
# 如果禁用地標,過濾地標引用
if not enable_landmark:
final_formatted_description = self.text_formatter.filter_landmark_references(final_formatted_description, enable_landmark=False)
# 如果描述為空,使用備用描述
if not final_formatted_description.strip() or final_formatted_description.strip() == ".":
self.logger.warning(f"Description for scene_type '{current_scene_type}' became empty after processing. Falling back.")
final_formatted_description = self.text_formatter.format_final_description(
self._generate_generic_description(current_detected_objects, lighting_info)
)
return final_formatted_description
except Exception as e:
error_msg = f"Error generating scene description: {str(e)}"
self.logger.error(f"{error_msg}\n{e.__class__.__name__}: {str(e)}")
try:
fallback_desc = self._generate_generic_description(detected_objects, lighting_info)
return self.text_formatter.format_final_description(fallback_desc)
except:
return "A scene with various elements is visible."
def deduplicate_sentences_in_description(self, description: str, similarity_threshold: float = 0.80) -> str:
"""
從一段描述文本中移除重複或高度相似的句子。
此方法會嘗試保留更長、資訊更豐富的句子版本。
Args:
description (str): 原始描述文本。
similarity_threshold (float): 判斷句子是否相似的 Jaccard 相似度閾值 (0 到 1)。
預設為 0.8,表示詞彙重疊度達到80%即視為相似。
Returns:
str: 移除了重複或高度相似句子後的文本。
"""
try:
if not description or not description.strip():
self.logger.debug("deduplicate_sentences_in_description: Received empty or blank description.")
return ""
# 使用正則表達式分割句子,保留句尾標點符號
sentences = re.split(r'(?<=[.!?])\s+', description.strip())
if not sentences:
self.logger.debug("deduplicate_sentences_in_description: No sentences found after splitting.")
return ""
unique_sentences_data = [] # 存儲 (原始句子文本, 該句子的詞彙集合)
for current_sentence_text in sentences:
current_sentence_text = current_sentence_text.strip()
if not current_sentence_text:
continue
# 預處理當前句子以進行比較:轉小寫、移除標點、分割成詞彙集合
simplified_current_text = re.sub(r'[^\w\s\d]', '', current_sentence_text.lower()) # 保留數字
current_sentence_words = set(simplified_current_text.split())
if not current_sentence_words: # 如果處理後是空集合 (例如句子只包含標點)
# 如果原始句子有內容(例如只有一個標點),就保留它
if current_sentence_text and not unique_sentences_data: # 避免在開頭加入孤立標點
unique_sentences_data.append((current_sentence_text, current_sentence_words))
continue
is_subsumed_or_highly_similar = False
index_to_replace = -1
for i, (kept_sentence_text, kept_sentence_words) in enumerate(unique_sentences_data):
if not kept_sentence_words: # 跳過已保留的空詞彙集合
continue
# 計算 Jaccard 相似度
intersection_len = len(current_sentence_words.intersection(kept_sentence_words))
union_len = len(current_sentence_words.union(kept_sentence_words))
jaccard_similarity = 0.0
if union_len > 0:
jaccard_similarity = intersection_len / union_len
elif not current_sentence_words and not kept_sentence_words: # 兩個都是空的
jaccard_similarity = 1.0
if jaccard_similarity >= similarity_threshold:
# 如果當前句子比已保留的句子長,則標記替換舊的
if len(current_sentence_words) > len(kept_sentence_words):
self.logger.debug(f"Deduplication: Replacing shorter \"{kept_sentence_text[:50]}...\" "
f"with longer similar \"{current_sentence_text[:50]}...\" (Jaccard: {jaccard_similarity:.2f})")
index_to_replace = i
break # 找到一個可以被替換的,就跳出內層循環
# 如果當前句子比已保留的句子短,或者長度相近但內容高度相似,則標記當前句子為重複
else: # current_sentence_words is shorter or of similar length
is_subsumed_or_highly_similar = True
self.logger.debug(f"Deduplication: Current sentence \"{current_sentence_text[:50]}...\" "
f"is subsumed by or highly similar to \"{kept_sentence_text[:50]}...\" (Jaccard: {jaccard_similarity:.2f}). Skipping.")
break
if index_to_replace != -1:
unique_sentences_data[index_to_replace] = (current_sentence_text, current_sentence_words)
elif not is_subsumed_or_highly_similar:
unique_sentences_data.append((current_sentence_text, current_sentence_words))
# 從 unique_sentences_data 中提取最終的句子文本
final_sentences = [s_data[0] for s_data in unique_sentences_data]
# 重組句子,確保每個句子以標點符號結尾,並且句子間有空格
reconstructed_response = ""
for i, s_text in enumerate(final_sentences):
s_text = s_text.strip()
if not s_text:
continue
# 確保句子以標點結尾
if not re.search(r'[.!?]$', s_text):
s_text += "."
reconstructed_response += s_text
if i < len(final_sentences) - 1: # 如果不是最後一句,添加空格
reconstructed_response += " "
self.logger.debug(f"Deduplicated description (len {len(reconstructed_response.strip())}): '{reconstructed_response.strip()[:150]}...'")
return reconstructed_response.strip()
except Exception as e:
self.logger.error(f"Error in deduplicate_sentences_in_description: {str(e)}")
self.logger.error(traceback.format_exc())
return description # 發生錯誤時返回原始描述
def _extract_placeholders(self, template: str) -> List[str]:
"""提取模板中的佔位符"""
import re
return re.findall(r'\{([^}]+)\}', template)
def _generate_placeholder_content(self, placeholder: str, detected_objects: List[Dict],
functional_zones: List, scene_type: str,
object_statistics: Dict) -> str:
"""生成佔位符內容"""
all_replacements = self._generate_default_replacements()
return self._get_placeholder_replacement(
placeholder, {}, all_replacements, detected_objects, scene_type
)
def _preprocess_functional_zones(self, functional_zones: List) -> Dict:
"""預處理功能區域數據"""
if isinstance(functional_zones, list):
# 將列表轉換為字典格式
zones_dict = {}
for i, zone in enumerate(functional_zones):
if isinstance(zone, str):
zones_dict[f"area {i+1}"] = {"description": zone}
elif isinstance(zone, dict):
zones_dict[f"area {i+1}"] = zone
return zones_dict
elif isinstance(functional_zones, dict):
return functional_zones
else:
return {}
def _standardize_placeholder_content(self, content: str, placeholder_type: str) -> str:
"""標準化佔位符內容"""
if not content:
return "various elements"
return content.strip()
def _finalize_description_output(self, description: str) -> str:
"""最終化描述輸出"""
if not description:
return "A scene featuring various elements and organized areas of activity."
# 基本清理
import re
finalized = re.sub(r'\s+', ' ', description).strip()
# 確保適當結尾
if finalized and not finalized.endswith(('.', '!', '?')):
finalized += '.'
# 首字母大寫
if finalized:
finalized = finalized[0].upper() + finalized[1:] if len(finalized) > 1 else finalized.upper()
return finalized
def _sanitize_scene_type_for_description(self, scene_type: str) -> str:
"""
清理場景類型名稱,確保不包含內部標識符格式
Args:
scene_type: 原始場景類型名稱
Returns:
str: 清理後的場景類型名稱
"""
try:
# 移除下劃線並轉換為空格分隔的自然語言
cleaned_type = scene_type.replace('_', ' ')
# 確保不直接在描述中使用技術性場景類型名稱
return cleaned_type
except Exception as e:
self.logger.warning(f"Error sanitizing scene type '{scene_type}': {str(e)}")
return "general scene"
def _validate_and_clean_scene_details(self, scene_details: str) -> str:
"""
驗證並清理場景詳細信息,移除可能的模板填充錯誤
Args:
scene_details: 原始場景詳細信息
Returns:
str: 清理後的場景詳細信息
"""
try:
if not scene_details or not scene_details.strip():
return ""
cleaned = scene_details.strip()
# 移除常見的模板填充錯誤模式
import re
# 修復 "In ," 類型的錯誤
cleaned = re.sub(r'\bIn\s*,\s*', 'In this scene, ', cleaned)
cleaned = re.sub(r'\bAt\s*,\s*', 'At this location, ', cleaned)
cleaned = re.sub(r'\bWithin\s*,\s*', 'Within this area, ', cleaned)
# 移除內部標識符格式
cleaned = re.sub(r'\b\w+_\w+(?:_\w+)*\b(?!\s+(area|zone|region))',
lambda m: m.group(0).replace('_', ' '), cleaned)
# 確保句子完整性
if cleaned and not cleaned.endswith(('.', '!', '?')):
cleaned += '.'
return cleaned
except Exception as e:
self.logger.warning(f"Error validating scene details: {str(e)}")
return scene_details if scene_details else ""
def _generate_landmark_description(self,
scene_type: str,
detected_objects: List[Dict],
confidence: float,
lighting_info: Optional[Dict] = None,
functional_zones: Optional[Dict] = None,
landmark_objects: Optional[List[Dict]] = None) -> str:
"""
生成包含地標信息的場景描述
Args:
scene_type: 識別的場景類型
detected_objects: 檢測到的物件列表
confidence: 場景分類置信度
lighting_info: 照明條件信息
functional_zones: 功能區域信息
landmark_objects: 識別為地標的物件列表
Returns:
str: 包含地標信息的自然語言場景描述
"""
try:
# 如果沒有提供地標物件,從檢測物件中篩選
if landmark_objects is None:
landmark_objects = [obj for obj in detected_objects if obj.get("is_landmark", False)]
# 如果沒有地標,退回到標準描述
if not landmark_objects:
if scene_type in ["tourist_landmark", "natural_landmark", "historical_monument"]:
base_description = "A scenic area that appears to be a tourist destination, though specific landmarks are not clearly identifiable."
else:
return self.text_formatter.format_final_description(self._generate_scene_details(
scene_type,
detected_objects,
lighting_info,
self.viewpoint_detector.detect_viewpoint(detected_objects)
))
else:
# 獲取主要地標
primary_landmark = max(landmark_objects, key=lambda x: x.get("confidence", 0))
landmark_name = primary_landmark.get("class_name", "landmark")
# 先取原生 location
landmark_location = primary_landmark.get("location", "")
# 如果 location 為空,就從全域 ALL_LANDMARKS 補上
lm_id = primary_landmark.get("landmark_id")
if not landmark_location and lm_id and lm_id in ALL_LANDMARKS:
landmark_location = ALL_LANDMARKS[lm_id].get("location", "")
# 根據地標類型選擇適當的描述模板,並插入 location
if scene_type == "natural_landmark" or primary_landmark.get("landmark_type") == "natural":
base_description = f"A natural landmark scene featuring {landmark_name} in {landmark_location}."
elif scene_type == "historical_monument" or primary_landmark.get("landmark_type") == "monument":
base_description = f"A historical monument scene showcasing {landmark_name}, a significant landmark in {landmark_location}."
else:
base_description = f"A tourist landmark scene centered around {landmark_name}, an iconic structure in {landmark_location}."
# 添加地標的額外信息
landmark_details = []
for landmark in landmark_objects:
details = []
if "year_built" in landmark:
details.append(f"built in {landmark['year_built']}")
if "architectural_style" in landmark:
details.append(f"featuring {landmark['architectural_style']} architectural style")
if "significance" in landmark:
details.append(landmark["significance"])
# 補 location(如果該物件沒有 location,就再從 ALL_LANDMARKS 撈一次)
loc = landmark.get("location", "")
lm_id_iter = landmark.get("landmark_id")
if not loc and lm_id_iter and lm_id_iter in ALL_LANDMARKS:
loc = ALL_LANDMARKS[lm_id_iter].get("location", "")
if loc:
details.append(f"located in {loc}")
if details:
landmark_details.append(f"{landmark['class_name']} ({', '.join(details)})")
# 將詳細信息添加到基本描述中
if landmark_details:
description = base_description + " The scene features " + ", ".join(landmark_details) + "."
else:
description = base_description
# 獲取視角
viewpoint = self.viewpoint_detector.detect_viewpoint(detected_objects)
# 生成人員活動描述
people_count = len([obj for obj in detected_objects if obj["class_id"] == 0])
if people_count > 0:
if people_count == 1:
people_description = "There is one person in the scene, likely a tourist or visitor."
elif people_count < 5:
people_description = f"There are {people_count} people in the scene, possibly tourists visiting the landmark."
else:
people_description = f"The scene includes a group of {people_count} people, indicating this is a popular tourist destination."
description = self.text_formatter.smart_append(description, people_description)
# 添加照明信息
if lighting_info and "time_of_day" in lighting_info:
lighting_type = lighting_info["time_of_day"]
lighting_description = self.template_manager.get_lighting_template(lighting_type)
description = self.text_formatter.smart_append(description, lighting_description)
# 添加視角描述
if viewpoint != "eye_level":
viewpoint_template = self.template_manager.get_viewpoint_template(viewpoint)
prefix = viewpoint_template.get('prefix', '')
if prefix and not description.startswith(prefix):
if description and description[0].isupper():
description = prefix + description[0].lower() + description[1:]
else:
description = prefix + description
viewpoint_desc = viewpoint_template.get("observation", "").format(
scene_elements="the landmark and surrounding area"
)
if viewpoint_desc and viewpoint_desc not in description:
description = self.text_formatter.smart_append(description, viewpoint_desc)
# 添加功能區域描述
if functional_zones and len(functional_zones) > 0:
zones_desc = self.object_description_generator.describe_functional_zones(functional_zones)
if zones_desc:
description = self.text_formatter.smart_append(description, zones_desc)
# 描述可能的活動
landmark_activities = []
if scene_type == "natural_landmark" or any(obj.get("landmark_type") == "natural" for obj in landmark_objects):
landmark_activities = [
"nature photography",
"scenic viewing",
"hiking or walking",
"guided nature tours",
"outdoor appreciation"
]
elif scene_type == "historical_monument" or any(obj.get("landmark_type") == "monument" for obj in landmark_objects):
landmark_activities = [
"historical sightseeing",
"educational tours",
"cultural appreciation",
"photography of historical architecture",
"learning about historical significance"
]
else:
landmark_activities = [
"sightseeing",
"taking photographs",
"guided tours",
"cultural tourism",
"souvenir shopping"
]
# 添加活動描述
if landmark_activities:
activities_text = "Common activities at this location include " + ", ".join(landmark_activities[:3]) + "."
description = self.text_formatter.smart_append(description, activities_text)
return self.text_formatter.format_final_description(description)
except Exception as e:
self.logger.warning(f"Error generating landmark description: {str(e)}")
# 備用處理
return self.text_formatter.format_final_description(
"A landmark scene with notable architectural or natural features."
)
def _is_intersection(self, detected_objects: List[Dict]) -> bool:
"""
通過分析物件分布來判斷場景是否為十字路口
Args:
detected_objects: 檢測到的物件列表
Returns:
bool: 是否為十字路口
"""
try:
pedestrians = [obj for obj in detected_objects if obj.get("class_id") == 0]
if len(pedestrians) >= 8:
positions = [obj.get("normalized_center", (0, 0)) for obj in pedestrians]
x_coords = [pos[0] for pos in positions]
y_coords = [pos[1] for pos in positions]
x_variance = np.var(x_coords) if len(x_coords) > 1 else 0
y_variance = np.var(y_coords) if len(y_coords) > 1 else 0
x_range = max(x_coords) - min(x_coords)
y_range = max(y_coords) - min(y_coords)
if x_range > 0.5 and y_range > 0.5 and 0.7 < (x_range / y_range) < 1.3:
return True
return False
except Exception as e:
self.logger.warning(f"Error detecting intersection: {str(e)}")
return False
def _generate_generic_description(self, detected_objects: List[Dict], lighting_info: Optional[Dict] = None) -> str:
"""
當場景類型未知或置信度極低時生成通用描述
Args:
detected_objects: 檢測到的物件列表
lighting_info: 可選的照明條件信息
Returns:
str: 基於檢測物件的通用描述
"""
try:
obj_counts = {}
for obj in detected_objects:
class_name = obj.get("class_name", "unknown object")
if class_name not in obj_counts:
obj_counts[class_name] = 0
obj_counts[class_name] += 1
top_objects = sorted(obj_counts.items(), key=lambda x: x[1], reverse=True)[:5]
if not top_objects:
base_desc = "This scene displays various elements, though specific objects are not clearly identifiable."
else:
objects_text = []
for name, count in top_objects:
# 確保物件名稱不包含技術性格式
clean_name = name.replace('_', ' ') if isinstance(name, str) else str(name)
if count > 1:
objects_text.append(f"{count} {clean_name}s")
else:
objects_text.append(f"a {clean_name}" if clean_name[0].lower() not in 'aeiou' else f"an {clean_name}")
if len(objects_text) == 1:
objects_list = objects_text[0]
elif len(objects_text) == 2:
objects_list = f"{objects_text[0]} and {objects_text[1]}"
else:
objects_list = ", ".join(objects_text[:-1]) + f", and {objects_text[-1]}"
base_desc = f"This scene features {objects_list}."
# 添加照明信息
if lighting_info and "time_of_day" in lighting_info:
lighting_type = lighting_info["time_of_day"]
lighting_desc = self.template_manager.get_lighting_template(lighting_type)
base_desc += f" {lighting_desc}"
return base_desc
except Exception as e:
self.logger.warning(f"Error generating generic description: {str(e)}")
return "A general scene is visible with various elements."
def _generate_scene_details(self,
scene_type: str,
detected_objects: List[Dict],
lighting_info: Optional[Dict] = None,
viewpoint: str = "eye_level",
spatial_analysis: Optional[Dict] = None,
image_dimensions: Optional[Tuple[int, int]] = None,
places365_info: Optional[Dict] = None,
object_statistics: Optional[Dict] = None) -> str:
"""
基於場景類型和檢測物件生成詳細描述
Args:
scene_type: 識別的場景類型
detected_objects: 檢測到的物件列表
lighting_info: 可選的照明條件信息
viewpoint: 檢測到的視角
spatial_analysis: 可選的空間分析結果
image_dimensions: 可選的圖像尺寸
places365_info: 可選的 Places365 場景分類結果
object_statistics: 可選的詳細物件統計信息
Returns:
str: 詳細場景描述
"""
try:
scene_details = ""
# 日常場景類型列表
everyday_scene_types = [
"general_indoor_space", "generic_street_view",
"desk_area_workspace", "outdoor_gathering_spot",
"kitchen_counter_or_utility_area", "unknown"
]
# 預處理場景類型以避免內部格式洩漏
processed_scene_type = self._sanitize_scene_type_for_description(scene_type)
# 確定場景描述方法
is_confident_specific_scene = scene_type not in everyday_scene_types and scene_type in self.template_manager.get_scene_detail_templates(scene_type)
treat_as_everyday = scene_type in everyday_scene_types
if hasattr(self, 'enable_landmark') and not self.enable_landmark:
if scene_type not in ["kitchen", "bedroom", "living_room", "office_workspace", "dining_area", "professional_kitchen"]:
treat_as_everyday = True
if treat_as_everyday or not is_confident_specific_scene:
self.logger.debug(f"Generating dynamic description for scene_type: {scene_type}")
scene_details = self.object_description_generator.generate_dynamic_everyday_description(
detected_objects,
lighting_info,
viewpoint,
spatial_analysis,
image_dimensions,
places365_info,
object_statistics
)
else:
self.logger.debug(f"Using template for scene_type: {scene_type}")
templates_list = self.template_manager.get_scene_detail_templates(scene_type, viewpoint)
if templates_list:
detail_template = random.choice(templates_list)
scene_details = self.template_manager.fill_template(
detail_template,
detected_objects,
scene_type,
places365_info,
object_statistics
)
else:
scene_details = self.object_description_generator.generate_dynamic_everyday_description(
detected_objects, lighting_info, viewpoint, spatial_analysis,
image_dimensions, places365_info, object_statistics
)
# 如果禁用地標檢測,過濾地標引用
if hasattr(self, 'enable_landmark') and not self.enable_landmark:
scene_details = self.text_formatter.filter_landmark_references(scene_details, enable_landmark=False)
return scene_details if scene_details else "A scene with some visual elements."
except Exception as e:
self.logger.warning(f"Error generating scene details: {str(e)}")
return "A scene with various elements."
def filter_landmark_references(self, text, enable_landmark=True):
"""
動態過濾文本中的地標引用
Args:
text: 需要過濾的文本
enable_landmark: 是否啟用地標功能
Returns:
str: 過濾後的文本
"""
return self.text_formatter.filter_landmark_references(text, enable_landmark)
def get_prominent_objects(self, detected_objects: List[Dict],
min_prominence_score: float = 0.5,
max_categories_to_return: Optional[int] = None,
max_total_objects: Optional[int] = None) -> List[Dict]:
"""
獲取最重要的物件
Args:
detected_objects: 檢測到的物件列表
min_prominence_score: 最小重要性分數閾值,預設為0.5
max_categories_to_return: 可選的最大返回類別數量限制
max_total_objects: 可選的最大返回物件總數限制
Returns:
List[Dict]: 重要物件列表
"""
try:
# 傳遞所有參數
prominent_objects = self.object_description_generator.get_prominent_objects(
detected_objects,
min_prominence_score,
max_categories_to_return
)
# 如果指定了最大物件總數限制,進行額外過濾
if max_total_objects is not None and max_total_objects > 0:
# 限制總物件數量,保持重要性排序
prominent_objects = prominent_objects[:max_total_objects]
# 如果指定了最大類別數量限制,則進行額外過濾
if max_categories_to_return is not None and max_categories_to_return > 0:
# 按類別分組物件
categories_seen = set()
filtered_objects = []
for obj in prominent_objects:
class_name = obj.get("class_name", "unknown")
if class_name not in categories_seen:
categories_seen.add(class_name)
filtered_objects.append(obj)
# 如果已達到最大類別數量,停止添加新類別
if len(categories_seen) >= max_categories_to_return:
break
elif class_name in categories_seen:
# 如果是已見過的類別,仍然添加該物件
filtered_objects.append(obj)
return filtered_objects
return prominent_objects
except Exception as e:
self.logger.warning(f"Error getting prominent objects: {str(e)}")
return []
def detect_viewpoint(self, detected_objects: List[Dict]) -> str:
"""
檢測圖像視角類型
Args:
detected_objects: 檢測到的物件列表
Returns:
str: 檢測到的視角類型
"""
try:
return self.viewpoint_detector.detect_viewpoint(detected_objects)
except Exception as e:
self.logger.warning(f"Error detecting viewpoint: {str(e)}")
return "eye_level"
def detect_cultural_context(self, scene_type: str, detected_objects: List[Dict]) -> Optional[str]:
"""
檢測場景的文化語境
Args:
scene_type: 識別的場景類型
detected_objects: 檢測到的物件列表
Returns:
Optional[str]: 檢測到的文化語境或None
"""
try:
return self.cultural_context_analyzer.detect_cultural_context(scene_type, detected_objects)
except CulturalContextError as e:
self.logger.warning(f"Error detecting cultural context: {str(e)}")
return None
def generate_cultural_elements(self, cultural_context: str) -> str:
"""
為檢測到的文化語境生成描述元素
Args:
cultural_context: 檢測到的文化語境
Returns:
str: 文化元素描述
"""
try:
return self.cultural_context_analyzer.generate_cultural_elements(cultural_context)
except CulturalContextError as e:
self.logger.warning(f"Error generating cultural elements: {str(e)}")
return ""
def format_object_list_for_description(self, objects: List[Dict],
use_indefinite_article_for_one: bool = False,
count_threshold_for_generalization: int = -1,
max_types_to_list: int = 5) -> str:
"""
將物件列表格式化為人類可讀的字符串
Args:
objects: 物件字典列表
use_indefinite_article_for_one: 單個物件是否使用 "a/an"
count_threshold_for_generalization: 計數閾值
max_types_to_list: 最大物件類型數量
Returns:
str: 格式化的物件描述字符串
"""
try:
return self.object_description_generator.format_object_list_for_description(
objects, use_indefinite_article_for_one, count_threshold_for_generalization, max_types_to_list
)
except ObjectDescriptionError as e:
self.logger.warning(f"Error formatting object list: {str(e)}")
return "various objects"
def get_spatial_description(self, obj: Dict, image_width: Optional[int] = None,
image_height: Optional[int] = None) -> str:
"""
為物件生成空間位置描述
Args:
obj: 物件字典
image_width: 可選的圖像寬度
image_height: 可選的圖像高度
Returns:
str: 空間描述字符串
"""
try:
return self.object_description_generator.get_spatial_description(obj, image_width, image_height)
except ObjectDescriptionError as e:
self.logger.warning(f"Error generating spatial description: {str(e)}")
return "in the scene"
def optimize_object_description(self, description: str) -> str:
"""
優化物件描述,避免重複列舉相同物件
Args:
description: 原始描述文本
Returns:
str: 優化後的描述文本
"""
try:
return self.object_description_generator.optimize_object_description(description)
except ObjectDescriptionError as e:
self.logger.warning(f"Error optimizing object description: {str(e)}")
return description
def describe_functional_zones(self, functional_zones: Dict) -> str:
"""
生成場景功能區域的描述
Args:
functional_zones: 識別出的功能區域字典
Returns:
str: 功能區域描述
"""
try:
return self.object_description_generator.describe_functional_zones(functional_zones)
except ObjectDescriptionError as e:
self.logger.warning(f"Error describing functional zones: {str(e)}")
return ""
def smart_append(self, current_text: str, new_fragment: str) -> str:
"""
智能地將新文本片段附加到現有文本
Args:
current_text: 要附加到的現有文本
new_fragment: 要附加的新文本片段
Returns:
str: 合併後的文本
"""
try:
return self.text_formatter.smart_append(current_text, new_fragment)
except TextFormattingError as e:
self.logger.warning(f"Error in smart append: {str(e)}")
return f"{current_text} {new_fragment}" if current_text else new_fragment
def format_final_description(self, text: str) -> str:
"""
格式化最終描述文本
Args:
text: 要格式化的文本
Returns:
str: 格式化後的文本
"""
try:
return self.text_formatter.format_final_description(text)
except TextFormattingError as e:
self.logger.warning(f"Error formatting final description: {str(e)}")
return text
def get_template(self, category: str, key: Optional[str] = None):
"""
獲取指定類別的模板
Args:
category: 模板類別名稱
key: 可選的具體模板鍵值
Returns:
模板內容
"""
try:
return self.template_manager.get_template(category, key)
except (TemplateLoadingError, TemplateFillError) as e:
self.logger.warning(f"Error getting template: {str(e)}")
return None
def get_viewpoint_confidence(self, detected_objects: List[Dict]) -> Tuple[str, float]:
"""
獲取視角檢測結果及其信心度
Args:
detected_objects: 檢測到的物件列表
Returns:
Tuple[str, float]: (視角類型, 信心度)
"""
try:
return self.viewpoint_detector.get_viewpoint_confidence(detected_objects)
except ViewpointDetectionError as e:
self.logger.warning(f"Error getting viewpoint confidence: {str(e)}")
return "eye_level", 0.5
def get_supported_cultures(self) -> List[str]:
"""
獲取所有支援的文化語境列表
Returns:
List[str]: 支援的文化語境名稱列表
"""
return self.cultural_context_analyzer.get_supported_cultures()
def has_cultural_context(self, cultural_context: str) -> bool:
"""
檢查是否支援指定的文化語境
Args:
cultural_context: 文化語境名稱
Returns:
bool: 是否支援該文化語境
"""
return self.cultural_context_analyzer.has_cultural_context(cultural_context)
def validate_text_quality(self, text: str) -> Dict[str, bool]:
"""
驗證文本質量
Args:
text: 要驗證的文本
Returns:
Dict[str, bool]: 質量檢查結果
"""
try:
return self.text_formatter.validate_text_quality(text)
except TextFormattingError as e:
self.logger.warning(f"Error validating text quality: {str(e)}")
return {"error": True}
def get_text_statistics(self, text: str) -> Dict[str, int]:
"""
獲取文本統計信息
Args:
text: 要分析的文本
Returns:
Dict[str, int]: 文本統計信息
"""
try:
return self.text_formatter.get_text_statistics(text)
except TextFormattingError as e:
self.logger.warning(f"Error getting text statistics: {str(e)}")
return {"characters": 0, "words": 0, "sentences": 0}
def reload_templates(self):
"""
重新載入所有模板
"""
try:
self.template_manager.reload_templates()
self.logger.info("Templates reloaded successfully")
except (TemplateLoadingError, TemplateFillError) as e:
self.logger.error(f"Error reloading templates: {str(e)}")
raise EnhancedSceneDescriberError(f"Failed to reload templates: {str(e)}") from e
def get_configuration(self) -> Dict[str, Any]:
"""
獲取當前配置信息
Returns:
Dict[str, Any]: 配置信息字典
"""
try:
return {
"scene_types_count": len(self.scene_types),
"viewpoint_detector_config": self.viewpoint_detector.viewpoint_params,
"object_generator_config": self.object_description_generator.get_configuration(),
"supported_cultures": self.cultural_context_analyzer.get_supported_cultures(),
"template_categories": self.template_manager.get_template_categories()
}
except Exception as e:
self.logger.warning(f"Error getting configuration: {str(e)}")
return {"error": str(e)}
def _initialize_fallback_components(self):
"""備用組件初始化"""
try:
self.region_analyzer = RegionAnalyzer()
self.object_description_generator = ObjectDescriptionGenerator(
region_analyzer=self.region_analyzer
)
except Exception as e:
self.logger.error(f"Fallback component initialization failed: {str(e)}")