VisionScout / scene_analysis_coordinator.py
DawnC's picture
Upload 59 files
e6a18b7 verified
raw
history blame
50.8 kB
import logging
import traceback
import numpy as np
from typing import Dict, List, Tuple, Optional, Any
from PIL import Image
class SceneAnalysisCoordinator:
"""
負責整個場景分析流程的協調和控制邏輯,包含主要的分析流程、
處理無檢測結果的回退邏輯,以及多源分析結果的整合。
"""
def __init__(self, component_initializer, scene_scoring_engine, landmark_processing_manager,
scene_confidence_threshold: float = 0.6):
"""
初始化場景分析協調器。
Args:
component_initializer: 組件初始化器實例
scene_scoring_engine: 場景評分引擎實例
landmark_processing_manager: 地標處理管理器實例
scene_confidence_threshold: 場景置信度閾值
"""
self.logger = logging.getLogger(__name__)
self.component_initializer = component_initializer
self.scene_scoring_engine = scene_scoring_engine
self.landmark_processing_manager = landmark_processing_manager
self.scene_confidence_threshold = scene_confidence_threshold
# 獲取必要的組件和數據
self.spatial_analyzer = component_initializer.get_component('spatial_analyzer')
self.descriptor = component_initializer.get_component('descriptor')
self.scene_describer = component_initializer.get_component('scene_describer')
self.clip_analyzer = component_initializer.get_component('clip_analyzer')
self.llm_enhancer = component_initializer.get_component('llm_enhancer')
self.scene_types = component_initializer.get_data_structure('SCENE_TYPES')
# 從組件初始化器獲取功能開關狀態
self.use_clip = component_initializer.use_clip
self.use_llm = component_initializer.use_llm
self.enable_landmark = component_initializer.enable_landmark
def analyze(self, detection_result: Any, lighting_info: Optional[Dict] = None,
class_confidence_threshold: float = 0.25, scene_confidence_threshold: float = 0.6,
enable_landmark: bool = True, places365_info: Optional[Dict] = None) -> Dict:
"""
分析檢測結果以確定場景類型並提供理解。
Args:
detection_result: 來自 YOLOv8 或類似系統的檢測結果
lighting_info: 可選的照明條件分析結果
class_confidence_threshold: 考慮物體的最小置信度
scene_confidence_threshold: 確定場景的最小置信度
enable_landmark: 是否為此次運行啟用地標檢測和識別
places365_info: 可選的 Places365 場景分類結果
Returns:
包含場景分析結果的字典
"""
current_run_enable_landmark = enable_landmark
self.logger.info(f"DIAGNOSTIC (SceneAnalyzer.analyze): Called with current_run_enable_landmark={current_run_enable_landmark}")
self.logger.debug(f"SceneAnalyzer received lighting_info type: {type(lighting_info)}")
self.logger.debug(f"SceneAnalyzer lighting_info source: {lighting_info.get('source', 'unknown') if isinstance(lighting_info, dict) else 'not_dict'}")
# 記錄 Places365 資訊
if places365_info:
self.logger.info(f"DIAGNOSTIC: Places365 info received - scene: {places365_info.get('scene_label', 'unknown')}, "
f"mapped: {places365_info.get('mapped_scene_type', 'unknown')}, "
f"confidence: {places365_info.get('confidence', 0.0):.3f}")
# 同步 enable_landmark 狀態到子組件(為此次分析運行)
self._sync_landmark_status_to_components(current_run_enable_landmark)
# 提取和處理原始圖像
original_image_pil, image_dims_val = self._extract_image_info(detection_result)
# 處理無 YOLO 檢測結果的情況
no_yolo_detections = self._check_no_yolo_detections(detection_result)
if no_yolo_detections:
return self._handle_no_yolo_detections(
original_image_pil, image_dims_val, current_run_enable_landmark,
lighting_info, places365_info
)
# 主處理流程(有 YOLO 檢測結果)
return self._handle_main_analysis_flow(
detection_result, original_image_pil, image_dims_val,
class_confidence_threshold, scene_confidence_threshold,
current_run_enable_landmark, lighting_info, places365_info
)
def _sync_landmark_status_to_components(self, current_run_enable_landmark: bool):
"""同步地標狀態到所有相關組件。"""
# 更新場景評分引擎
self.scene_scoring_engine.update_enable_landmark_status(current_run_enable_landmark)
# 更新地標處理管理器
self.landmark_processing_manager.update_enable_landmark_status(current_run_enable_landmark)
# 更新其他組件的地標狀態
for component_name in ['scene_describer', 'clip_analyzer', 'landmark_classifier']:
component = self.component_initializer.get_component(component_name)
if component and hasattr(component, 'enable_landmark'):
component.enable_landmark = current_run_enable_landmark
# 更新實例狀態
self.enable_landmark = current_run_enable_landmark
def _extract_image_info(self, detection_result) -> Tuple[Optional[Image.Image], Optional[Tuple[int, int]]]:
"""從檢測結果中提取圖像信息。"""
original_image_pil = None
image_dims_val = None # 將是 (width, height)
if (detection_result is not None and hasattr(detection_result, 'orig_img') and
detection_result.orig_img is not None):
if isinstance(detection_result.orig_img, np.ndarray):
try:
img_array = detection_result.orig_img
if img_array.ndim == 3 and img_array.shape[2] == 4: # RGBA
img_array = img_array[:, :, :3] # 轉換為 RGB
if img_array.ndim == 2: # 灰度
original_image_pil = Image.fromarray(img_array).convert("RGB")
else: # 假設 RGB 或 BGR(如果源是 cv2 BGR,PIL 在 fromarray 時會處理 BGR->RGB,但明確處理更好)
original_image_pil = Image.fromarray(img_array)
if hasattr(original_image_pil, 'mode') and original_image_pil.mode == 'BGR': # 明確將 OpenCV 的 BGR 轉換為 PIL 的 RGB
original_image_pil = original_image_pil.convert('RGB')
image_dims_val = (original_image_pil.width, original_image_pil.height)
except Exception as e:
self.logger.warning(f"Error converting NumPy orig_img to PIL: {e}")
elif hasattr(detection_result.orig_img, 'size') and callable(getattr(detection_result.orig_img, 'convert', None)):
original_image_pil = detection_result.orig_img.copy().convert("RGB") # 確保 RGB
image_dims_val = original_image_pil.size
else:
self.logger.warning(f"detection_result.orig_img (type: {type(detection_result.orig_img)}) is not a recognized NumPy array or PIL Image.")
else:
self.logger.warning("detection_result.orig_img not available. Image-based analysis will be limited.")
return original_image_pil, image_dims_val
def _check_no_yolo_detections(self, detection_result) -> bool:
"""檢查是否沒有 YOLO 檢測結果。"""
return (detection_result is None or
not hasattr(detection_result, 'boxes') or
not hasattr(detection_result.boxes, 'xyxy') or
len(detection_result.boxes.xyxy) == 0)
def _handle_no_yolo_detections(self, original_image_pil, image_dims_val,
current_run_enable_landmark, lighting_info, places365_info) -> Dict:
"""處理無 YOLO 檢測結果的情況。"""
tried_landmark_detection = False
landmark_detection_result = None
# 嘗試地標檢測
if original_image_pil and self.use_clip and current_run_enable_landmark:
landmark_detection_result = self._attempt_landmark_detection_no_yolo(
original_image_pil, image_dims_val, lighting_info
)
tried_landmark_detection = True
if landmark_detection_result:
return landmark_detection_result
# 如果地標檢測失敗或未嘗試,使用 CLIP 進行一般場景分析
if not landmark_detection_result and self.use_clip and original_image_pil:
clip_fallback_result = self._attempt_clip_fallback_analysis(
original_image_pil, image_dims_val, current_run_enable_landmark, lighting_info
)
if clip_fallback_result:
return clip_fallback_result
# 最終回退邏輯
return self._get_final_fallback_result(places365_info, lighting_info)
def _attempt_landmark_detection_no_yolo(self, original_image_pil, image_dims_val, lighting_info) -> Optional[Dict]:
"""在無 YOLO 檢測的情況下嘗試地標檢測。"""
try:
# 初始化地標分類器(如果需要)
landmark_classifier = self.component_initializer.get_component('landmark_classifier')
if not landmark_classifier and self.clip_analyzer:
if hasattr(self.clip_analyzer, 'get_clip_instance'):
try:
model, preprocess, device = self.clip_analyzer.get_clip_instance()
landmark_classifier = CLIPZeroShotClassifier(device=device)
self.landmark_processing_manager.set_landmark_classifier(landmark_classifier)
self.logger.info("Initialized landmark classifier with shared CLIP model")
except Exception as e:
self.logger.warning(f"Could not initialize landmark classifier: {e}")
return None
if landmark_classifier:
self.logger.info("Attempting landmark detection with no YOLO boxes")
landmark_results_no_yolo = landmark_classifier.intelligent_landmark_search(
original_image_pil, yolo_boxes=None, base_threshold=0.2 # 略微降低閾值,提高靈敏度
)
# 確保在無地標場景時返回有效結果
if landmark_results_no_yolo is None:
landmark_results_no_yolo = {"is_landmark_scene": False, "detected_landmarks": []}
if (landmark_results_no_yolo and landmark_results_no_yolo.get("is_landmark_scene", False)):
return self._process_landmark_detection_result(
landmark_results_no_yolo, image_dims_val, lighting_info
)
except Exception as e:
self.logger.error(f"Error in landmark-only detection path (analyze method): {e}")
traceback.print_exc()
return None
def _process_landmark_detection_result(self, landmark_results, image_dims_val, lighting_info) -> Dict:
"""處理地標檢測結果並生成最終輸出。"""
primary_landmark = landmark_results.get("primary_landmark")
# 放寬閾值條件,以便捕獲更多潛在地標
if not primary_landmark or primary_landmark.get("confidence", 0) <= 0.25:
return None
detected_objects_from_landmarks_list = []
w_img, h_img = image_dims_val if image_dims_val else (1, 1)
for lm_info_item in landmark_results.get("detected_landmarks", []):
if lm_info_item.get("confidence", 0) > 0.25: # 降低閾值與上面保持一致
# 安全獲取 box 值,避免索引錯誤
box = lm_info_item.get("box", [0, 0, w_img, h_img])
if len(box) < 4:
box = [0, 0, w_img, h_img]
# 計算中心點和標準化坐標
center_x, center_y = (box[0] + box[2]) / 2, (box[1] + box[3]) / 2
norm_cx = center_x / w_img if w_img > 0 else 0.5
norm_cy = center_y / h_img if h_img > 0 else 0.5
# 決定地標類型
landmark_type = "architectural" # 預設類型
landmark_id = lm_info_item.get("landmark_id", "")
landmark_classifier = self.component_initializer.get_component('landmark_classifier')
if (landmark_classifier and hasattr(landmark_classifier, '_determine_landmark_type') and landmark_id):
try:
landmark_type = landmark_classifier._determine_landmark_type(landmark_id)
except Exception as e:
self.logger.error(f"Error determining landmark type: {e}")
else:
# 使用簡單的基於 ID 的啟發式方法推斷類型
landmark_id_lower = landmark_id.lower() if isinstance(landmark_id, str) else ""
if "natural" in landmark_id_lower or any(term in landmark_id_lower for term in ["mountain", "waterfall", "canyon", "lake"]):
landmark_type = "natural"
elif "monument" in landmark_id_lower or "memorial" in landmark_id_lower or "historical" in landmark_id_lower:
landmark_type = "monument"
# 決定區域位置
region = "center" # 預設值
if self.spatial_analyzer and hasattr(self.spatial_analyzer, '_determine_region'):
try:
region = self.spatial_analyzer._determine_region(norm_cx, norm_cy)
except Exception as e:
self.logger.error(f"Error determining region: {e}")
# 取得並補 location
loc_lm = lm_info_item.get("location", "")
if not loc_lm and landmark_id in ALL_LANDMARKS:
loc_lm = ALL_LANDMARKS[landmark_id].get("location", "")
# 創建地標物體
landmark_obj = {
"class_id": lm_info_item.get("landmark_id", f"LM_{lm_info_item.get('landmark_name','unk')}")[:15],
"class_name": lm_info_item.get("landmark_name", "Unknown Landmark"),
"confidence": lm_info_item.get("confidence", 0.0),
"box": box,
"center": (center_x, center_y),
"normalized_center": (norm_cx, norm_cy),
"size": (box[2] - box[0], box[3] - box[1]),
"normalized_size": (
(box[2] - box[0])/(w_img if w_img>0 else 1),
(box[3] - box[1])/(h_img if h_img>0 else 1)
),
"area": (box[2] - box[0]) * (box[3] - box[1]),
"normalized_area": (
(box[2] - box[0]) * (box[3] - box[1])
) / ((w_img*h_img) if w_img*h_img >0 else 1),
"is_landmark": True,
"landmark_id": landmark_id,
"location": loc_lm or "Unknown Location",
"region": region,
"year_built": lm_info_item.get("year_built", ""),
"architectural_style": lm_info_item.get("architectural_style", ""),
"significance": lm_info_item.get("significance", ""),
"landmark_type": landmark_type
}
detected_objects_from_landmarks_list.append(landmark_obj)
if not detected_objects_from_landmarks_list:
return None
# 設定場景類型
best_scene_val = "tourist_landmark" # 預設
if primary_landmark:
try:
lm_type = primary_landmark.get("landmark_type", "architectural")
if lm_type and "natural" in lm_type.lower():
best_scene_val = "natural_landmark"
elif lm_type and ("historical" in lm_type.lower() or "monument" in lm_type.lower()):
best_scene_val = "historical_monument"
except Exception as e:
self.logger.error(f"Error determining scene type from landmark type: {e}")
# 確保場景類型有效
if best_scene_val not in self.scene_types:
best_scene_val = "tourist_landmark" # 預設場景類型
# 設定置信度
scene_confidence = primary_landmark.get("confidence", 0.0) if primary_landmark else 0.0
# 生成其他必要的分析結果
region_analysis = self._generate_region_analysis(detected_objects_from_landmarks_list)
functional_zones = self._generate_functional_zones(
detected_objects_from_landmarks_list,
best_scene_val
)
scene_description = self._generate_scene_description(
best_scene_val, detected_objects_from_landmarks_list, scene_confidence,
lighting_info, functional_zones, image_dims_val
)
enhanced_description = self._enhance_description_with_llm(
scene_description, best_scene_val, detected_objects_from_landmarks_list,
scene_confidence, lighting_info, functional_zones, landmark_results, image_dims_val
)
possible_activities = self._extract_possible_activities(detected_objects_from_landmarks_list, landmark_results)
# 準備最終結果
return {
"scene_type": best_scene_val,
"scene_name": self.scene_types.get(best_scene_val, {}).get("name", "Landmark"),
"confidence": round(float(scene_confidence), 4),
"description": scene_description,
"enhanced_description": enhanced_description,
"objects_present": detected_objects_from_landmarks_list,
"object_count": len(detected_objects_from_landmarks_list),
"regions": region_analysis,
"possible_activities": possible_activities,
"functional_zones": functional_zones,
"detected_landmarks": [lm for lm in detected_objects_from_landmarks_list if lm.get("is_landmark", False)],
"primary_landmark": primary_landmark,
"lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
}
def _attempt_clip_fallback_analysis(self, original_image_pil, image_dims_val,
current_run_enable_landmark, lighting_info) -> Optional[Dict]:
"""嘗試使用 CLIP 進行一般場景分析。"""
try:
clip_analysis_val = None
if self.clip_analyzer and hasattr(self.clip_analyzer, 'analyze_image'):
try:
clip_analysis_val = self.clip_analyzer.analyze_image(
original_image_pil,
enable_landmark=current_run_enable_landmark
)
except Exception as e:
self.logger.error(f"Error in CLIP analysis: {e}")
scene_type_llm = "llm_inferred_no_yolo"
confidence_llm = 0.0
if clip_analysis_val and isinstance(clip_analysis_val, dict):
top_scene = clip_analysis_val.get("top_scene")
if top_scene and isinstance(top_scene, tuple) and len(top_scene) >= 2:
confidence_llm = top_scene[1]
if isinstance(top_scene[0], str):
scene_type_llm = top_scene[0]
desc_llm = "Primary object detection did not yield results. This description is based on overall image context."
w_llm, h_llm = image_dims_val if image_dims_val else (1, 1)
enhanced_desc_llm = self._enhance_no_detection_description(
desc_llm, scene_type_llm, confidence_llm, lighting_info,
clip_analysis_val, current_run_enable_landmark, w_llm, h_llm
)
# 安全類型轉換
try:
confidence_float = float(confidence_llm)
except (ValueError, TypeError):
confidence_float = 0.0
# 確保增強描述不為空
if not enhanced_desc_llm or not isinstance(enhanced_desc_llm, str):
enhanced_desc_llm = desc_llm
# 返回結果
return {
"scene_type": scene_type_llm,
"confidence": round(confidence_float, 4),
"description": desc_llm,
"enhanced_description": enhanced_desc_llm,
"objects_present": [],
"object_count": 0,
"regions": {},
"possible_activities": [],
"safety_concerns": [],
"lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
}
except Exception as e:
self.logger.error(f"Error in CLIP no-detection fallback (analyze method): {e}")
traceback.print_exc()
return None
def _get_final_fallback_result(self, places365_info, lighting_info) -> Dict:
"""獲取最終的回退結果。"""
# 檢查 Places365 是否提供有用的場景信息(即使沒有 YOLO 檢測)
fallback_scene_type = "unknown"
fallback_confidence = 0.0
fallback_description = "No objects were detected in the image, and contextual analysis could not be performed or failed."
if places365_info and places365_info.get('confidence', 0) > 0.3:
fallback_scene_type = places365_info.get('mapped_scene_type', 'unknown')
fallback_confidence = places365_info.get('confidence', 0.0)
fallback_description = f"Scene appears to be {places365_info.get('scene_label', 'an unidentified location')} based on overall visual context."
return {
"scene_type": fallback_scene_type,
"confidence": fallback_confidence,
"description": fallback_description,
"enhanced_description": "The image analysis system could not detect any recognizable objects or landmarks in this image.",
"objects_present": [],
"object_count": 0,
"regions": {},
"possible_activities": [],
"safety_concerns": [],
"lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
}
def _handle_main_analysis_flow(self, detection_result, original_image_pil, image_dims_val,
class_confidence_threshold, scene_confidence_threshold,
current_run_enable_landmark, lighting_info, places365_info) -> Dict:
"""處理主要的分析流程(有 YOLO 檢測結果)。"""
# 更新類別名稱映射
if hasattr(detection_result, 'names'):
if hasattr(self.spatial_analyzer, 'class_names'):
self.spatial_analyzer.class_names = detection_result.names
# 提取檢測到的物體
detected_objects_main = self.spatial_analyzer._extract_detected_objects(
detection_result,
confidence_threshold=class_confidence_threshold
)
if not detected_objects_main:
return {
"scene_type": "unknown", "confidence": 0.0,
"description": "No objects detected with sufficient confidence by the primary vision system.",
"objects_present": [], "object_count": 0, "regions": {}, "possible_activities": [],
"safety_concerns": [], "lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
}
# 空間分析
region_analysis_val = self.spatial_analyzer._analyze_regions(detected_objects_main)
# 地標處理和整合
landmark_objects_identified = []
landmark_specific_activities = []
final_landmark_info = {}
if self.use_clip and current_run_enable_landmark:
detected_objects_main, landmark_objects_identified = self.landmark_processing_manager.process_unknown_objects(
detection_result, detected_objects_main, self.clip_analyzer
)
if landmark_objects_identified:
landmark_specific_activities = self.landmark_processing_manager.extract_landmark_specific_activities(
landmark_objects_identified
)
final_landmark_info = {
"detected_landmarks": landmark_objects_identified,
"primary_landmark": max(landmark_objects_identified, key=lambda x: x.get("confidence", 0.0), default=None),
"detailed_landmarks": landmark_objects_identified
}
# 如果當前運行禁用地標檢測,清理地標物體
if not current_run_enable_landmark:
detected_objects_main = [obj for obj in detected_objects_main if not obj.get("is_landmark", False)]
final_landmark_info = {}
# 計算場景分數並進行融合
yolo_scene_scores = self.scene_scoring_engine.compute_scene_scores(
detected_objects_main, spatial_analysis_results=region_analysis_val
)
clip_scene_scores = {}
clip_analysis_results = None
if self.use_clip and original_image_pil is not None:
clip_analysis_results, clip_scene_scores = self._perform_clip_analysis(
original_image_pil, current_run_enable_landmark, lighting_info
)
# 融合場景分數
yolo_only_objects = [obj for obj in detected_objects_main if not obj.get("is_landmark")]
num_yolo_detections = len(yolo_only_objects)
avg_yolo_confidence = (sum(obj.get('confidence', 0.0) for obj in yolo_only_objects) / num_yolo_detections
if num_yolo_detections > 0 else 0.0)
scene_scores_fused = self.scene_scoring_engine.fuse_scene_scores(
yolo_scene_scores, clip_scene_scores,
num_yolo_detections=num_yolo_detections,
avg_yolo_confidence=avg_yolo_confidence,
lighting_info=lighting_info,
places365_info=places365_info
)
# 確定最終場景類型
final_best_scene, final_scene_confidence = self.scene_scoring_engine.determine_scene_type(scene_scores_fused)
# 處理禁用地標檢測時的替代場景類型
if (not current_run_enable_landmark and
final_best_scene in ["tourist_landmark", "natural_landmark", "historical_monument"]):
alt_scene_type = self.landmark_processing_manager.get_alternative_scene_type(
final_best_scene, detected_objects_main, scene_scores_fused
)
final_best_scene = alt_scene_type
final_scene_confidence = scene_scores_fused.get(alt_scene_type, 0.6)
# 生成最終的描述性內容
final_result = self._generate_final_result(
final_best_scene, final_scene_confidence, detected_objects_main,
landmark_specific_activities, landmark_objects_identified, final_landmark_info,
region_analysis_val, lighting_info, scene_scores_fused, current_run_enable_landmark,
clip_analysis_results, image_dims_val, scene_confidence_threshold
)
return final_result
def _perform_clip_analysis(self, original_image_pil, current_run_enable_landmark, lighting_info) -> Tuple[Optional[Dict], Dict]:
"""執行 CLIP 分析。"""
clip_analysis_results = None
clip_scene_scores = {}
try:
clip_analysis_results = self.clip_analyzer.analyze_image(
original_image_pil,
enable_landmark=current_run_enable_landmark,
exclude_categories=["landmark", "tourist", "monument", "tower", "attraction", "scenic", "historical", "famous"] if not current_run_enable_landmark else None
)
if isinstance(clip_analysis_results, dict):
clip_scene_scores = clip_analysis_results.get("scene_scores", {})
# 如果禁用地標檢測,再次過濾
if not current_run_enable_landmark:
clip_scene_scores = {k: v for k, v in clip_scene_scores.items()
if not any(kw in k.lower() for kw in ["landmark", "monument", "tourist"])}
if "cultural_analysis" in clip_analysis_results:
del clip_analysis_results["cultural_analysis"]
if ("top_scene" in clip_analysis_results and
any(term in clip_analysis_results.get("top_scene", ["unknown", 0.0])[0].lower()
for term in ["landmark", "monument", "tourist"])):
non_lm_cs = sorted([item for item in clip_scene_scores.items() if item[1] > 0],
key=lambda x: x[1], reverse=True)
clip_analysis_results["top_scene"] = non_lm_cs[0] if non_lm_cs else ("unknown", 0.0)
# 處理照明信息回退
if (not lighting_info and "lighting_condition" in clip_analysis_results):
lt, lc = clip_analysis_results.get("lighting_condition", ("unknown", 0.0))
lighting_info = {"time_of_day": lt, "confidence": lc, "source": "CLIP_fallback"}
except Exception as e:
self.logger.error(f"Error in main CLIP analysis for YOLO path (analyze method): {e}")
return clip_analysis_results, clip_scene_scores
def _generate_final_result(self, final_best_scene, final_scene_confidence, detected_objects_main,
landmark_specific_activities, landmark_objects_identified, final_landmark_info,
region_analysis_val, lighting_info, scene_scores_fused, current_run_enable_landmark,
clip_analysis_results, image_dims_val, scene_confidence_threshold) -> Dict:
"""生成最終的分析結果。"""
# 生成最終的描述性內容(活動、安全、區域)
final_activities = []
# 通用活動推斷
generic_activities = []
if self.descriptor and hasattr(self.descriptor, '_infer_possible_activities'):
generic_activities = self.descriptor._infer_possible_activities(
final_best_scene, detected_objects_main,
enable_landmark=current_run_enable_landmark, scene_scores=scene_scores_fused
)
# 優先處理策略:使用特定地標活動,不足時才從通用活動補充
if landmark_specific_activities:
# 如果有特定活動,優先保留,去除與特定活動重複的通用活動
unique_generic_activities = [act for act in generic_activities if act not in landmark_specific_activities]
# 如果特定活動少於3個,從通用活動中補充
if len(landmark_specific_activities) < 3:
# 補充通用活動但總數不超過7個
supplement_count = min(3 - len(landmark_specific_activities), len(unique_generic_activities))
if supplement_count > 0:
final_activities.extend(unique_generic_activities[:supplement_count])
else:
# 若無特定活動,則使用所有通用活動
final_activities.extend(generic_activities)
# 去重並排序,但確保特定地標活動保持在前面
final_activities_set = set(final_activities)
final_activities = []
# 先加入特定地標活動(按原順序)
for activity in landmark_specific_activities:
if activity in final_activities_set:
final_activities.append(activity)
final_activities_set.remove(activity)
# 再加入通用活動(按字母排序)
final_activities.extend(sorted(list(final_activities_set)))
# 安全問題識別
final_safety_concerns = []
if self.descriptor and hasattr(self.descriptor, '_identify_safety_concerns'):
final_safety_concerns = self.descriptor._identify_safety_concerns(detected_objects_main, final_best_scene)
# 功能區域識別
final_functional_zones = {}
if self.spatial_analyzer and hasattr(self.spatial_analyzer, '_identify_functional_zones'):
general_zones = self.spatial_analyzer._identify_functional_zones(detected_objects_main, final_best_scene)
final_functional_zones.update(general_zones)
# 地標相關的功能區域
if landmark_objects_identified and self.spatial_analyzer and hasattr(self.spatial_analyzer, '_identify_landmark_zones'):
landmark_zones = self.spatial_analyzer._identify_landmark_zones(landmark_objects_identified)
final_functional_zones.update(landmark_zones)
# 如果當前運行禁用地標檢測,過濾相關內容
if not current_run_enable_landmark:
final_functional_zones = {
str(k): v
for k, v in final_functional_zones.items()
if (not str(k).isdigit())
and (not any(kw in str(k).lower() for kw in ["landmark", "monument", "viewing", "tourist"]))
}
current_activities_temp = [act for act in final_activities
if not any(kw in act.lower() for kw in ["sightsee", "photograph", "tour", "histor", "landmark", "monument", "cultur"])]
final_activities = current_activities_temp
if not final_activities and self.descriptor and hasattr(self.descriptor, '_infer_possible_activities'):
final_activities = self.descriptor._infer_possible_activities("generic_street_view", detected_objects_main, enable_landmark=False)
# 創建淨化的光線資訊,避免不合理的時間描述
lighting_info_clean = None
if lighting_info:
lighting_info_clean = {
"is_indoor": lighting_info.get("is_indoor"),
"confidence": lighting_info.get("confidence", 0.0),
"time_of_day": lighting_info.get("time_of_day", "unknown")
}
# 生成場景描述
base_scene_description = self._generate_scene_description(
final_best_scene, detected_objects_main, final_scene_confidence,
lighting_info_clean, final_functional_zones, image_dims_val
)
# 清理地標引用(如果禁用地標檢測)
if not current_run_enable_landmark:
base_scene_description = self.landmark_processing_manager.remove_landmark_references(base_scene_description)
# LLM 增強
enhanced_final_description = self._enhance_final_description(
base_scene_description, final_best_scene, final_scene_confidence, detected_objects_main,
final_functional_zones, final_activities, final_safety_concerns, lighting_info,
clip_analysis_results, current_run_enable_landmark, image_dims_val, final_landmark_info
)
# 清理增強描述的地標引用
if not current_run_enable_landmark:
enhanced_final_description = self.landmark_processing_manager.remove_landmark_references(enhanced_final_description)
# 構建最終輸出字典
output_result = {
"scene_type": final_best_scene if final_scene_confidence >= scene_confidence_threshold else "unknown",
"scene_name": (self.scene_types.get(final_best_scene, {}).get("name", "Unknown Scene")
if final_scene_confidence >= scene_confidence_threshold else "Unknown Scene"),
"confidence": round(float(final_scene_confidence), 4),
"description": base_scene_description,
"enhanced_description": enhanced_final_description,
"objects_present": [{"class_id": obj.get("class_id", -1),
"class_name": obj.get("class_name", "unknown"),
"confidence": round(float(obj.get("confidence", 0.0)), 4)}
for obj in detected_objects_main],
"object_count": len(detected_objects_main),
"regions": region_analysis_val,
"possible_activities": final_activities,
"safety_concerns": final_safety_concerns,
"functional_zones": final_functional_zones,
"lighting_conditions": lighting_info if lighting_info else {"time_of_day": "unknown", "confidence": 0.0, "source": "default"}
}
# 添加替代場景
if self.descriptor and hasattr(self.descriptor, '_get_alternative_scenes'):
output_result["alternative_scenes"] = self.descriptor._get_alternative_scenes(
scene_scores_fused, scene_confidence_threshold, top_k=2
)
# 添加地標相關信息
if current_run_enable_landmark and final_landmark_info and final_landmark_info.get("detected_landmarks"):
output_result.update(final_landmark_info)
if final_best_scene in ["tourist_landmark", "natural_landmark", "historical_monument"]:
output_result["scene_source"] = "landmark_detection"
elif not current_run_enable_landmark:
for key_rm in ["detected_landmarks", "primary_landmark", "detailed_landmarks", "scene_source"]:
if key_rm in output_result:
del output_result[key_rm]
# 添加 CLIP 分析結果
if clip_analysis_results and isinstance(clip_analysis_results, dict) and "error" not in clip_analysis_results:
top_scene_clip = clip_analysis_results.get("top_scene", ("unknown", 0.0))
output_result["clip_analysis"] = {
"top_scene": (top_scene_clip[0], round(float(top_scene_clip[1]), 4)),
"cultural_analysis": clip_analysis_results.get("cultural_analysis", {}) if current_run_enable_landmark else {}
}
return output_result
# 輔助方法
def _generate_region_analysis(self, detected_objects):
"""生成區域分析結果。"""
if self.spatial_analyzer and hasattr(self.spatial_analyzer, '_analyze_regions'):
try:
return self.spatial_analyzer._analyze_regions(detected_objects)
except Exception as e:
self.logger.error(f"Error analyzing regions: {e}")
return {}
def _generate_functional_zones(self, detected_objects, scene_type):
"""
生成功能區域。
由於原本直接呼叫 _identify_landmark_zones,導致非地標場景必定回 {}。
這裡改為呼叫 _identify_functional_zones,並帶入 scene_type。
"""
try:
# 如果 spatial_analyzer 可以識別 functional zones,就調用它
if self.spatial_analyzer and hasattr(self.spatial_analyzer, '_identify_functional_zones'):
return self.spatial_analyzer._identify_functional_zones(detected_objects, scene_type)
except Exception as e:
self.logger.error(f"Error identifying functional zones: {e}")
self.logger.error(traceback.format_exc())
return {}
def _generate_scene_description(self, scene_type, detected_objects, confidence,
lighting_info, functional_zones, image_dims):
"""生成場景描述。"""
if self.scene_describer and hasattr(self.scene_describer, 'generate_description'):
try:
for obj in detected_objects:
if obj.get("is_landmark"):
loc_obj = obj.get("location", "")
lm_id_obj = obj.get("landmark_id")
if (not loc_obj) and lm_id_obj and lm_id_obj in ALL_LANDMARKS:
obj["location"] = ALL_LANDMARKS[lm_id_obj].get("location", "")
return self.scene_describer.generate_description(
scene_type=scene_type,
detected_objects=detected_objects,
confidence=confidence,
lighting_info=lighting_info,
functional_zones=list(functional_zones.keys()) if functional_zones else [],
enable_landmark=self.enable_landmark,
scene_scores={scene_type: confidence},
spatial_analysis={},
image_dimensions=image_dims
)
except Exception as e:
self.logger.error(f"Error generating scene description: {e}")
return f"A {scene_type} scene."
def _enhance_description_with_llm(self, scene_description, scene_type, detected_objects,
confidence, lighting_info, functional_zones, landmark_results, image_dims):
"""使用 LLM 增強描述。"""
if not self.use_llm or not self.llm_enhancer:
return scene_description
try:
prominent_objects_detail = ""
if self.scene_describer and hasattr(self.scene_describer, 'format_object_list_for_description'):
try:
prominent_objects_detail = self.scene_describer.format_object_list_for_description(
detected_objects[:min(1, len(detected_objects))]
)
except Exception as e:
self.logger.error(f"Error formatting object list: {e}")
w_img, h_img = image_dims if image_dims else (1, 1)
scene_data_llm = {
"original_description": scene_description,
"scene_type": scene_type,
"scene_name": self.scene_types.get(scene_type, {}).get("name", "Landmark"),
"detected_objects": detected_objects,
"object_list": "landmark",
"confidence": confidence,
"lighting_info": lighting_info,
"functional_zones": functional_zones,
"clip_analysis": landmark_results.get("clip_analysis_on_full_image", {}),
"enable_landmark": True,
"image_width": w_img,
"image_height": h_img,
"prominent_objects_detail": prominent_objects_detail
}
return self.llm_enhancer.enhance_description(scene_data_llm)
except Exception as e:
self.logger.error(f"Error enhancing description with LLM: {e}")
traceback.print_exc()
return scene_description
def _enhance_no_detection_description(self, desc, scene_type, confidence, lighting_info,
clip_analysis, enable_landmark, width, height):
"""增強無檢測結果的描述。"""
if not self.use_llm or not self.llm_enhancer:
return desc
try:
clip_analysis_safe = {}
if isinstance(clip_analysis, dict):
clip_analysis_safe = clip_analysis
scene_data_llm = {
"original_description": desc,
"scene_type": scene_type,
"scene_name": "Contextually Inferred (No Detections)",
"detected_objects": [],
"object_list": "general ambiance",
"confidence": confidence,
"lighting_info": lighting_info or {"time_of_day": "unknown", "confidence": 0.0},
"clip_analysis": clip_analysis_safe,
"enable_landmark": enable_landmark,
"image_width": width,
"image_height": height,
"prominent_objects_detail": "the overall visual context"
}
if hasattr(self.llm_enhancer, 'enhance_description'):
try:
enhanced = self.llm_enhancer.enhance_description(scene_data_llm)
if enhanced and len(enhanced.strip()) >= 20:
return enhanced
except Exception as e:
self.logger.error(f"Error in enhance_description: {e}")
if hasattr(self.llm_enhancer, 'handle_no_detection'):
try:
return self.llm_enhancer.handle_no_detection(clip_analysis_safe)
except Exception as e:
self.logger.error(f"Error in handle_no_detection: {e}")
except Exception as e:
self.logger.error(f"Error preparing data for LLM enhancement: {e}")
traceback.print_exc()
return desc
def _extract_possible_activities(self, detected_objects, landmark_results):
"""提取可能的活動。"""
possible_activities = ["Sightseeing"]
# 檢查是否有主要地標活動從 CLIP 分析結果中獲取
primary_landmark_activities = landmark_results.get("primary_landmark_activities", [])
if primary_landmark_activities:
self.logger.info(f"Using {len(primary_landmark_activities)} landmark-specific activities")
possible_activities = primary_landmark_activities
else:
# 從檢測到的地標中提取特定活動
landmark_specific_activities = self.landmark_processing_manager.extract_landmark_specific_activities(detected_objects)
if landmark_specific_activities:
possible_activities = list(set(landmark_specific_activities)) # 去重
self.logger.info(f"Extracted {len(possible_activities)} activities from landmark data")
else:
# 回退到通用活動推斷
if self.descriptor and hasattr(self.descriptor, '_infer_possible_activities'):
try:
possible_activities = self.descriptor._infer_possible_activities(
"tourist_landmark",
detected_objects,
enable_landmark=True,
scene_scores={"tourist_landmark": 0.8}
)
except Exception as e:
self.logger.error(f"Error inferring possible activities: {e}")
return possible_activities
def _enhance_final_description(self, base_description, scene_type, scene_confidence, detected_objects,
functional_zones, activities, safety_concerns, lighting_info,
clip_analysis_results, enable_landmark, image_dims, landmark_info):
"""增強最終描述。"""
if not self.use_llm or not self.llm_enhancer:
return base_description
try:
obj_list_for_llm = ", ".join(sorted(list(set(
obj["class_name"] for obj in detected_objects
if obj.get("confidence", 0) > 0.4 and not obj.get("is_landmark")
))))
if not obj_list_for_llm and enable_landmark and landmark_info.get("primary_landmark"):
obj_list_for_llm = landmark_info["primary_landmark"].get("class_name", "a prominent feature")
elif not obj_list_for_llm:
obj_list_for_llm = "various visual elements"
# 生成物體統計信息
object_statistics = {}
for obj in detected_objects:
class_name = obj.get("class_name", "unknown")
if class_name not in object_statistics:
object_statistics[class_name] = {
"count": 0,
"avg_confidence": 0.0,
"max_confidence": 0.0,
"instances": []
}
stats = object_statistics[class_name]
stats["count"] += 1
stats["instances"].append(obj)
stats["max_confidence"] = max(stats["max_confidence"], obj.get("confidence", 0.0))
# 計算平均信心度
for class_name, stats in object_statistics.items():
if stats["count"] > 0:
total_conf = sum(inst.get("confidence", 0.0) for inst in stats["instances"])
stats["avg_confidence"] = total_conf / stats["count"]
llm_scene_data = {
"original_description": base_description,
"scene_type": scene_type,
"scene_name": self.scene_types.get(scene_type, {}).get("name", "Unknown Scene"),
"detected_objects": detected_objects,
"object_list": obj_list_for_llm,
"object_statistics": object_statistics,
"confidence": scene_confidence,
"lighting_info": lighting_info,
"functional_zones": functional_zones,
"activities": activities,
"safety_concerns": safety_concerns,
"clip_analysis": clip_analysis_results if isinstance(clip_analysis_results, dict) else None,
"enable_landmark": enable_landmark,
"image_width": image_dims[0] if image_dims else None,
"image_height": image_dims[1] if image_dims else None,
"prominent_objects_detail": ""
}
# 添加顯著物體詳細信息
if self.scene_describer and hasattr(self.scene_describer, 'get_prominent_objects') and hasattr(self.scene_describer, 'format_object_list_for_description'):
try:
prominent_objects = self.scene_describer.get_prominent_objects(
detected_objects, min_prominence_score=0.1, max_categories_to_return=3, max_total_objects=7
)
llm_scene_data["prominent_objects_detail"] = self.scene_describer.format_object_list_for_description(prominent_objects)
except Exception as e:
self.logger.error(f"Error getting prominent objects: {e}")
if enable_landmark and landmark_info.get("primary_landmark"):
llm_scene_data["primary_landmark_info"] = landmark_info["primary_landmark"]
return self.llm_enhancer.enhance_description(llm_scene_data)
except Exception as e:
self.logger.error(f"Error in LLM Enhancement in main flow (analyze method): {e}")
return base_description