Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import MarianMTModel, MarianTokenizer | |
| import torch | |
| # Load the model and tokenizer from the Hub | |
| model_name = "Dddixyy/latin-italian-translatorV5" | |
| tokenizer = MarianTokenizer.from_pretrained(model_name) | |
| model = MarianMTModel.from_pretrained(model_name) | |
| # Translation function | |
| def translate_latin_to_italian(latin_text): | |
| # Make the first letter lowercase if the input is not empty | |
| if latin_text: | |
| latin_text = latin_text[0].lower() + latin_text[1:] | |
| inputs = tokenizer(latin_text, return_tensors="pt", padding=True, truncation=True) | |
| with torch.no_grad(): | |
| generated_ids = model.generate(inputs["input_ids"]) | |
| translation = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
| return translation[0] | |
| # Define the Gradio interface | |
| interface = gr.Interface( | |
| fn=translate_latin_to_italian, | |
| inputs="text", | |
| outputs="text", | |
| title="Latin to Italian Translator", | |
| description="Translate Latin sentences to Italian using a fine-tuned MarianMT model.", | |
| examples=[ | |
| ["Amor vincit omnia."], | |
| ["Veni, vidi, vici."], | |
| ["Carpe diem."], | |
| ["Apud silvam frondosam."] | |
| ] | |
| ) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| interface.launch() |