Spaces:
Runtime error
Runtime error
from typing import Any, List | |
import cv2 | |
import threading | |
import gfpgan | |
import os | |
import modules.globals | |
import modules.processors.frame.core | |
from modules.core import update_status | |
from modules.face_analyser import get_one_face | |
from modules.typing import Frame, Face | |
import platform | |
import torch | |
from modules.utilities import ( | |
conditional_download, | |
is_image, | |
is_video, | |
) | |
FACE_ENHANCER = None | |
THREAD_SEMAPHORE = threading.Semaphore() | |
THREAD_LOCK = threading.Lock() | |
NAME = "DLC.FACE-ENHANCER" | |
abs_dir = os.path.dirname(os.path.abspath(__file__)) | |
models_dir = os.path.join( | |
os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models" | |
) | |
def pre_check() -> bool: | |
download_directory_path = models_dir | |
conditional_download( | |
download_directory_path, | |
[ | |
"https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth" | |
], | |
) | |
return True | |
def pre_start() -> bool: | |
if not is_image(modules.globals.target_path) and not is_video( | |
modules.globals.target_path | |
): | |
update_status("Select an image or video for target path.", NAME) | |
return False | |
return True | |
TENSORRT_AVAILABLE = False | |
try: | |
import torch_tensorrt | |
TENSORRT_AVAILABLE = True | |
except ImportError as im: | |
print(f"TensorRT is not available: {im}") | |
pass | |
except Exception as e: | |
print(f"TensorRT is not available: {e}") | |
pass | |
def get_face_enhancer() -> Any: | |
global FACE_ENHANCER | |
with THREAD_LOCK: | |
if FACE_ENHANCER is None: | |
model_path = os.path.join(models_dir, "GFPGANv1.4.pth") | |
selected_device = None | |
device_priority = [] | |
if TENSORRT_AVAILABLE and torch.cuda.is_available(): | |
selected_device = torch.device("cuda") | |
device_priority.append("TensorRT+CUDA") | |
elif torch.cuda.is_available(): | |
selected_device = torch.device("cuda") | |
device_priority.append("CUDA") | |
elif torch.backends.mps.is_available() and platform.system() == "Darwin": | |
selected_device = torch.device("mps") | |
device_priority.append("MPS") | |
elif not torch.cuda.is_available(): | |
selected_device = torch.device("cpu") | |
device_priority.append("CPU") | |
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=selected_device) | |
# for debug: | |
print(f"Selected device: {selected_device} and device priority: {device_priority}") | |
return FACE_ENHANCER | |
def enhance_face(temp_frame: Frame) -> Frame: | |
with THREAD_SEMAPHORE: | |
_, _, temp_frame = get_face_enhancer().enhance(temp_frame, paste_back=True) | |
return temp_frame | |
def process_frame(source_face: Face, temp_frame: Frame) -> Frame: | |
target_face = get_one_face(temp_frame) | |
if target_face: | |
temp_frame = enhance_face(temp_frame) | |
return temp_frame | |
def process_frames( | |
source_path: str, temp_frame_paths: List[str], progress: Any = None | |
) -> None: | |
for temp_frame_path in temp_frame_paths: | |
temp_frame = cv2.imread(temp_frame_path) | |
result = process_frame(None, temp_frame) | |
cv2.imwrite(temp_frame_path, result) | |
if progress: | |
progress.update(1) | |
def process_image(source_path: str, target_path: str, output_path: str) -> None: | |
target_frame = cv2.imread(target_path) | |
result = process_frame(None, target_frame) | |
cv2.imwrite(output_path, result) | |
def process_video(source_path: str, temp_frame_paths: List[str]) -> None: | |
modules.processors.frame.core.process_video(None, temp_frame_paths, process_frames) | |
def process_frame_v2(temp_frame: Frame) -> Frame: | |
target_face = get_one_face(temp_frame) | |
if target_face: | |
temp_frame = enhance_face(temp_frame) | |
return temp_frame | |