Spaces:
Runtime error
Runtime error
from typing import Any, List | |
import cv2 | |
import insightface | |
import threading | |
import numpy as np | |
import modules.globals | |
import logging | |
import modules.processors.frame.core | |
from modules.core import update_status | |
from modules.face_analyser import get_one_face, get_many_faces, default_source_face | |
from modules.typing import Face, Frame | |
from modules.utilities import ( | |
conditional_download, | |
is_image, | |
is_video, | |
) | |
from modules.cluster_analysis import find_closest_centroid | |
import os | |
FACE_SWAPPER = None | |
THREAD_LOCK = threading.Lock() | |
NAME = "DLC.FACE-SWAPPER" | |
abs_dir = os.path.dirname(os.path.abspath(__file__)) | |
models_dir = os.path.join( | |
os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models" | |
) | |
def pre_check() -> bool: | |
download_directory_path = abs_dir | |
conditional_download( | |
download_directory_path, | |
[ | |
"https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx" | |
], | |
) | |
return True | |
def pre_start() -> bool: | |
if not modules.globals.map_faces and not is_image(modules.globals.source_path): | |
update_status("Select an image for source path.", NAME) | |
return False | |
elif not modules.globals.map_faces and not get_one_face( | |
cv2.imread(modules.globals.source_path) | |
): | |
update_status("No face in source path detected.", NAME) | |
return False | |
if not is_image(modules.globals.target_path) and not is_video( | |
modules.globals.target_path | |
): | |
update_status("Select an image or video for target path.", NAME) | |
return False | |
return True | |
def get_face_swapper() -> Any: | |
global FACE_SWAPPER | |
with THREAD_LOCK: | |
if FACE_SWAPPER is None: | |
model_path = os.path.join(models_dir, "inswapper_128_fp16.onnx") | |
FACE_SWAPPER = insightface.model_zoo.get_model( | |
model_path, providers=["CPUExecutionProvider"] | |
) | |
return FACE_SWAPPER | |
def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: | |
if source_face is None or target_face is None: | |
print("[WARNING] Face detection failed: source or target face is missing.") | |
return temp_frame | |
face_swapper = get_face_swapper() | |
# Apply the face swap | |
swapped_frame = face_swapper.get( | |
temp_frame, target_face, source_face, paste_back=True | |
) | |
if modules.globals.mouth_mask: | |
# Create a mask for the target face | |
face_mask = create_face_mask(target_face, temp_frame) | |
# Create the mouth mask | |
mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon = ( | |
create_lower_mouth_mask(target_face, temp_frame) | |
) | |
# Apply the mouth area | |
swapped_frame = apply_mouth_area( | |
swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon | |
) | |
if modules.globals.show_mouth_mask_box: | |
mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon) | |
swapped_frame = draw_mouth_mask_visualization( | |
swapped_frame, target_face, mouth_mask_data | |
) | |
return swapped_frame | |
def process_frame(source_face: Face, temp_frame: Frame) -> Frame: | |
if modules.globals.color_correction: | |
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) | |
if modules.globals.many_faces: | |
many_faces = get_many_faces(temp_frame) | |
if many_faces: | |
for target_face in many_faces: | |
if source_face and target_face: | |
temp_frame = swap_face(source_face, target_face, temp_frame) | |
else: | |
print("Face detection failed for target/source.") | |
else: | |
target_face = get_one_face(temp_frame) | |
if target_face and source_face: | |
temp_frame = swap_face(source_face, target_face, temp_frame) | |
else: | |
logging.error("Face detection failed for target or source.") | |
return temp_frame | |
def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame: | |
if is_image(modules.globals.target_path): | |
if modules.globals.many_faces: | |
source_face = default_source_face() | |
for map in modules.globals.source_target_map: | |
target_face = map["target"]["face"] | |
temp_frame = swap_face(source_face, target_face, temp_frame) | |
elif not modules.globals.many_faces: | |
for map in modules.globals.source_target_map: | |
if "source" in map: | |
source_face = map["source"]["face"] | |
target_face = map["target"]["face"] | |
temp_frame = swap_face(source_face, target_face, temp_frame) | |
elif is_video(modules.globals.target_path): | |
if modules.globals.many_faces: | |
source_face = default_source_face() | |
for map in modules.globals.source_target_map: | |
target_frame = [ | |
f | |
for f in map["target_faces_in_frame"] | |
if f["location"] == temp_frame_path | |
] | |
for frame in target_frame: | |
for target_face in frame["faces"]: | |
temp_frame = swap_face(source_face, target_face, temp_frame) | |
elif not modules.globals.many_faces: | |
for map in modules.globals.source_target_map: | |
if "source" in map: | |
target_frame = [ | |
f | |
for f in map["target_faces_in_frame"] | |
if f["location"] == temp_frame_path | |
] | |
source_face = map["source"]["face"] | |
for frame in target_frame: | |
for target_face in frame["faces"]: | |
temp_frame = swap_face(source_face, target_face, temp_frame) | |
else: | |
detected_faces = get_many_faces(temp_frame) | |
if modules.globals.many_faces: | |
if detected_faces: | |
source_face = default_source_face() | |
for target_face in detected_faces: | |
temp_frame = swap_face(source_face, target_face, temp_frame) | |
elif not modules.globals.many_faces: | |
if detected_faces: | |
if len(detected_faces) <= len( | |
modules.globals.simple_map["target_embeddings"] | |
): | |
for detected_face in detected_faces: | |
closest_centroid_index, _ = find_closest_centroid( | |
modules.globals.simple_map["target_embeddings"], | |
detected_face.normed_embedding, | |
) | |
temp_frame = swap_face( | |
modules.globals.simple_map["source_faces"][ | |
closest_centroid_index | |
], | |
detected_face, | |
temp_frame, | |
) | |
else: | |
detected_faces_centroids = [] | |
for face in detected_faces: | |
detected_faces_centroids.append(face.normed_embedding) | |
i = 0 | |
for target_embedding in modules.globals.simple_map[ | |
"target_embeddings" | |
]: | |
closest_centroid_index, _ = find_closest_centroid( | |
detected_faces_centroids, target_embedding | |
) | |
temp_frame = swap_face( | |
modules.globals.simple_map["source_faces"][i], | |
detected_faces[closest_centroid_index], | |
temp_frame, | |
) | |
i += 1 | |
return temp_frame | |
def process_frames( | |
source_path: str, temp_frame_paths: List[str], progress: Any = None | |
) -> None: | |
if not modules.globals.map_faces: | |
source_face = get_one_face(cv2.imread(source_path)) | |
for temp_frame_path in temp_frame_paths: | |
temp_frame = cv2.imread(temp_frame_path) | |
try: | |
result = process_frame(source_face, temp_frame) | |
cv2.imwrite(temp_frame_path, result) | |
except Exception as exception: | |
print(exception) | |
pass | |
if progress: | |
progress.update(1) | |
else: | |
for temp_frame_path in temp_frame_paths: | |
temp_frame = cv2.imread(temp_frame_path) | |
try: | |
result = process_frame_v2(temp_frame, temp_frame_path) | |
cv2.imwrite(temp_frame_path, result) | |
except Exception as exception: | |
print(exception) | |
pass | |
if progress: | |
progress.update(1) | |
def process_image(source_path: str, target_path: str, output_path: str) -> None: | |
if not modules.globals.map_faces: | |
source_face = get_one_face(cv2.imread(source_path)) | |
target_frame = cv2.imread(target_path) | |
result = process_frame(source_face, target_frame) | |
cv2.imwrite(output_path, result) | |
else: | |
if modules.globals.many_faces: | |
update_status( | |
"Many faces enabled. Using first source image. Progressing...", NAME | |
) | |
target_frame = cv2.imread(output_path) | |
result = process_frame_v2(target_frame) | |
cv2.imwrite(output_path, result) | |
def process_video(source_path: str, temp_frame_paths: List[str]) -> None: | |
if modules.globals.map_faces and modules.globals.many_faces: | |
update_status( | |
"Many faces enabled. Using first source image. Progressing...", NAME | |
) | |
modules.processors.frame.core.process_video( | |
source_path, temp_frame_paths, process_frames | |
) | |
def create_lower_mouth_mask( | |
face: Face, frame: Frame | |
) -> (np.ndarray, np.ndarray, tuple, np.ndarray): | |
mask = np.zeros(frame.shape[:2], dtype=np.uint8) | |
mouth_cutout = None | |
landmarks = face.landmark_2d_106 | |
if landmarks is not None: | |
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | |
lower_lip_order = [ | |
65, | |
66, | |
62, | |
70, | |
69, | |
18, | |
19, | |
20, | |
21, | |
22, | |
23, | |
24, | |
0, | |
8, | |
7, | |
6, | |
5, | |
4, | |
3, | |
2, | |
65, | |
] | |
lower_lip_landmarks = landmarks[lower_lip_order].astype( | |
np.float32 | |
) # Use float for precise calculations | |
# Calculate the center of the landmarks | |
center = np.mean(lower_lip_landmarks, axis=0) | |
# Expand the landmarks outward | |
expansion_factor = ( | |
1 + modules.globals.mask_down_size | |
) # Adjust this for more or less expansion | |
expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center | |
# Extend the top lip part | |
toplip_indices = [ | |
20, | |
0, | |
1, | |
2, | |
3, | |
4, | |
5, | |
] # Indices for landmarks 2, 65, 66, 62, 70, 69, 18 | |
toplip_extension = ( | |
modules.globals.mask_size * 0.5 | |
) # Adjust this factor to control the extension | |
for idx in toplip_indices: | |
direction = expanded_landmarks[idx] - center | |
direction = direction / np.linalg.norm(direction) | |
expanded_landmarks[idx] += direction * toplip_extension | |
# Extend the bottom part (chin area) | |
chin_indices = [ | |
11, | |
12, | |
13, | |
14, | |
15, | |
16, | |
] # Indices for landmarks 21, 22, 23, 24, 0, 8 | |
chin_extension = 2 * 0.2 # Adjust this factor to control the extension | |
for idx in chin_indices: | |
expanded_landmarks[idx][1] += ( | |
expanded_landmarks[idx][1] - center[1] | |
) * chin_extension | |
# Convert back to integer coordinates | |
expanded_landmarks = expanded_landmarks.astype(np.int32) | |
# Calculate bounding box for the expanded lower mouth | |
min_x, min_y = np.min(expanded_landmarks, axis=0) | |
max_x, max_y = np.max(expanded_landmarks, axis=0) | |
# Add some padding to the bounding box | |
padding = int((max_x - min_x) * 0.1) # 10% padding | |
min_x = max(0, min_x - padding) | |
min_y = max(0, min_y - padding) | |
max_x = min(frame.shape[1], max_x + padding) | |
max_y = min(frame.shape[0], max_y + padding) | |
# Ensure the bounding box dimensions are valid | |
if max_x <= min_x or max_y <= min_y: | |
if (max_x - min_x) <= 1: | |
max_x = min_x + 1 | |
if (max_y - min_y) <= 1: | |
max_y = min_y + 1 | |
# Create the mask | |
mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8) | |
cv2.fillPoly(mask_roi, [expanded_landmarks - [min_x, min_y]], 255) | |
# Apply Gaussian blur to soften the mask edges | |
mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5) | |
# Place the mask ROI in the full-sized mask | |
mask[min_y:max_y, min_x:max_x] = mask_roi | |
# Extract the masked area from the frame | |
mouth_cutout = frame[min_y:max_y, min_x:max_x].copy() | |
# Return the expanded lower lip polygon in original frame coordinates | |
lower_lip_polygon = expanded_landmarks | |
return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon | |
def draw_mouth_mask_visualization( | |
frame: Frame, face: Face, mouth_mask_data: tuple | |
) -> Frame: | |
landmarks = face.landmark_2d_106 | |
if landmarks is not None and mouth_mask_data is not None: | |
mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = ( | |
mouth_mask_data | |
) | |
vis_frame = frame.copy() | |
# Ensure coordinates are within frame bounds | |
height, width = vis_frame.shape[:2] | |
min_x, min_y = max(0, min_x), max(0, min_y) | |
max_x, max_y = min(width, max_x), min(height, max_y) | |
# Adjust mask to match the region size | |
mask_region = mask[0 : max_y - min_y, 0 : max_x - min_x] | |
# Remove the color mask overlay | |
# color_mask = cv2.applyColorMap((mask_region * 255).astype(np.uint8), cv2.COLORMAP_JET) | |
# Ensure shapes match before blending | |
vis_region = vis_frame[min_y:max_y, min_x:max_x] | |
# Remove blending with color_mask | |
# if vis_region.shape[:2] == color_mask.shape[:2]: | |
# blended = cv2.addWeighted(vis_region, 0.7, color_mask, 0.3, 0) | |
# vis_frame[min_y:max_y, min_x:max_x] = blended | |
# Draw the lower lip polygon | |
cv2.polylines(vis_frame, [lower_lip_polygon], True, (0, 255, 0), 2) | |
# Remove the red box | |
# cv2.rectangle(vis_frame, (min_x, min_y), (max_x, max_y), (0, 0, 255), 2) | |
# Visualize the feathered mask | |
feather_amount = max( | |
1, | |
min( | |
30, | |
(max_x - min_x) // modules.globals.mask_feather_ratio, | |
(max_y - min_y) // modules.globals.mask_feather_ratio, | |
), | |
) | |
# Ensure kernel size is odd | |
kernel_size = 2 * feather_amount + 1 | |
feathered_mask = cv2.GaussianBlur( | |
mask_region.astype(float), (kernel_size, kernel_size), 0 | |
) | |
feathered_mask = (feathered_mask / feathered_mask.max() * 255).astype(np.uint8) | |
# Remove the feathered mask color overlay | |
# color_feathered_mask = cv2.applyColorMap(feathered_mask, cv2.COLORMAP_VIRIDIS) | |
# Ensure shapes match before blending feathered mask | |
# if vis_region.shape == color_feathered_mask.shape: | |
# blended_feathered = cv2.addWeighted(vis_region, 0.7, color_feathered_mask, 0.3, 0) | |
# vis_frame[min_y:max_y, min_x:max_x] = blended_feathered | |
# Add labels | |
cv2.putText( | |
vis_frame, | |
"Lower Mouth Mask", | |
(min_x, min_y - 10), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.5, | |
(255, 255, 255), | |
1, | |
) | |
cv2.putText( | |
vis_frame, | |
"Feathered Mask", | |
(min_x, max_y + 20), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.5, | |
(255, 255, 255), | |
1, | |
) | |
return vis_frame | |
return frame | |
def apply_mouth_area( | |
frame: np.ndarray, | |
mouth_cutout: np.ndarray, | |
mouth_box: tuple, | |
face_mask: np.ndarray, | |
mouth_polygon: np.ndarray, | |
) -> np.ndarray: | |
min_x, min_y, max_x, max_y = mouth_box | |
box_width = max_x - min_x | |
box_height = max_y - min_y | |
if ( | |
mouth_cutout is None | |
or box_width is None | |
or box_height is None | |
or face_mask is None | |
or mouth_polygon is None | |
): | |
return frame | |
try: | |
resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height)) | |
roi = frame[min_y:max_y, min_x:max_x] | |
if roi.shape != resized_mouth_cutout.shape: | |
resized_mouth_cutout = cv2.resize( | |
resized_mouth_cutout, (roi.shape[1], roi.shape[0]) | |
) | |
color_corrected_mouth = apply_color_transfer(resized_mouth_cutout, roi) | |
# Use the provided mouth polygon to create the mask | |
polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8) | |
adjusted_polygon = mouth_polygon - [min_x, min_y] | |
cv2.fillPoly(polygon_mask, [adjusted_polygon], 255) | |
# Apply feathering to the polygon mask | |
feather_amount = min( | |
30, | |
box_width // modules.globals.mask_feather_ratio, | |
box_height // modules.globals.mask_feather_ratio, | |
) | |
feathered_mask = cv2.GaussianBlur( | |
polygon_mask.astype(float), (0, 0), feather_amount | |
) | |
feathered_mask = feathered_mask / feathered_mask.max() | |
face_mask_roi = face_mask[min_y:max_y, min_x:max_x] | |
combined_mask = feathered_mask * (face_mask_roi / 255.0) | |
combined_mask = combined_mask[:, :, np.newaxis] | |
blended = ( | |
color_corrected_mouth * combined_mask + roi * (1 - combined_mask) | |
).astype(np.uint8) | |
# Apply face mask to blended result | |
face_mask_3channel = ( | |
np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0 | |
) | |
final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel) | |
frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8) | |
except Exception as e: | |
pass | |
return frame | |
def create_face_mask(face: Face, frame: Frame) -> np.ndarray: | |
mask = np.zeros(frame.shape[:2], dtype=np.uint8) | |
landmarks = face.landmark_2d_106 | |
if landmarks is not None: | |
# Convert landmarks to int32 | |
landmarks = landmarks.astype(np.int32) | |
# Extract facial features | |
right_side_face = landmarks[0:16] | |
left_side_face = landmarks[17:32] | |
right_eye = landmarks[33:42] | |
right_eye_brow = landmarks[43:51] | |
left_eye = landmarks[87:96] | |
left_eye_brow = landmarks[97:105] | |
# Calculate forehead extension | |
right_eyebrow_top = np.min(right_eye_brow[:, 1]) | |
left_eyebrow_top = np.min(left_eye_brow[:, 1]) | |
eyebrow_top = min(right_eyebrow_top, left_eyebrow_top) | |
face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]]) | |
forehead_height = face_top - eyebrow_top | |
extended_forehead_height = int(forehead_height * 5.0) # Extend by 50% | |
# Create forehead points | |
forehead_left = right_side_face[0].copy() | |
forehead_right = left_side_face[-1].copy() | |
forehead_left[1] -= extended_forehead_height | |
forehead_right[1] -= extended_forehead_height | |
# Combine all points to create the face outline | |
face_outline = np.vstack( | |
[ | |
[forehead_left], | |
right_side_face, | |
left_side_face[ | |
::-1 | |
], # Reverse left side to create a continuous outline | |
[forehead_right], | |
] | |
) | |
# Calculate padding | |
padding = int( | |
np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05 | |
) # 5% of face width | |
# Create a slightly larger convex hull for padding | |
hull = cv2.convexHull(face_outline) | |
hull_padded = [] | |
for point in hull: | |
x, y = point[0] | |
center = np.mean(face_outline, axis=0) | |
direction = np.array([x, y]) - center | |
direction = direction / np.linalg.norm(direction) | |
padded_point = np.array([x, y]) + direction * padding | |
hull_padded.append(padded_point) | |
hull_padded = np.array(hull_padded, dtype=np.int32) | |
# Fill the padded convex hull | |
cv2.fillConvexPoly(mask, hull_padded, 255) | |
# Smooth the mask edges | |
mask = cv2.GaussianBlur(mask, (5, 5), 3) | |
return mask | |
def apply_color_transfer(source, target): | |
""" | |
Apply color transfer from target to source image | |
""" | |
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32") | |
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32") | |
source_mean, source_std = cv2.meanStdDev(source) | |
target_mean, target_std = cv2.meanStdDev(target) | |
# Reshape mean and std to be broadcastable | |
source_mean = source_mean.reshape(1, 1, 3) | |
source_std = source_std.reshape(1, 1, 3) | |
target_mean = target_mean.reshape(1, 1, 3) | |
target_std = target_std.reshape(1, 1, 3) | |
# Perform the color transfer | |
source = (source - source_mean) * (target_std / source_std) + target_mean | |
return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR) | |