Spaces:
Build error
Build error
File size: 15,693 Bytes
2bd4c2d 4b767d1 ed46db2 f061e68 1cf1e9a 721ec8a a716ad6 7644e8f 31b5a64 688093f 7c7c6e4 31b5a64 2bd4c2d 4f76312 2bd4c2d 2b711ee 2bd4c2d c783a1e 2bd4c2d a114288 2bd4c2d 1ab39b9 2bd4c2d 4b767d1 ed46db2 4b767d1 ed46db2 4b767d1 ed46db2 4b767d1 7d0abf0 ed46db2 e44c462 2bd4c2d 1cf1e9a 2bd4c2d 7ab3a9b aed66e2 7ab3a9b 2bd4c2d 970098d 2bd4c2d 1ab39b9 2bd4c2d e1ed9ed 647913a 2bd4c2d a27b676 2bd4c2d 40bad55 2bd4c2d a27b676 647913a a716ad6 e1ed9ed 647913a a716ad6 a27b676 647913a e1ed9ed a27b676 e1ed9ed a27b676 c644610 e1ed9ed 2bd4c2d f061e68 a716ad6 647913a 2bd4c2d a716ad6 95c1934 2e1b034 95c1934 2bd4c2d e1ed9ed ae33c7e 2bd4c2d dcb3baa 2bd4c2d 4b767d1 9dd4077 2bd4c2d a51af63 10fdea1 7d14360 a51af63 10aa05e 10fdea1 e44c462 10fdea1 e44c462 10fdea1 e44c462 10fdea1 e44c462 c2855d4 e44c462 10fdea1 7d14360 10fdea1 7d14360 c6d3230 2bd4c2d 6d2db9f a51af63 2bd4c2d 40bad55 2bd4c2d b35fe14 2bd4c2d ed46db2 2bd4c2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import streamlit as st
import os
import groq
from dotenv import load_dotenv
import requests
import queue
import threading
import av
from deepgram import Deepgram
from streamlit_webrtc import webrtc_streamer, WebRtcMode
from pydub import AudioSegment
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import networkx as nx
import random
import json
import pandas as pd
import matplotlib.pyplot as plt
from llmformatter import format_llm_response
from classifyresponse import classify_response
from classifylikeconsultant import classify_response1
import re
st.markdown(
"""
<link rel="manifest" href="manifest.json">
<script>
if ('serviceWorker' in navigator) {
navigator.serviceWorker.register('service-worker.js')
.then((registration) => {
console.log('Service Worker registered with scope:', registration.scope);
})
.catch((error) => {
console.log('Service Worker registration failed:', error);
});
}
</script>
""",
unsafe_allow_html=True,
)
# Load environment variables
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
DEEPGRAM_API_KEY = os.getenv("DEEPGRAM_API_KEY")
groq_client = groq.Client(api_key=GROQ_API_KEY)
deepgram = Deepgram(DEEPGRAM_API_KEY)
SYSTEM_PROMPT = """
You are a highly experienced McKinsey consultant specializing in Strategy & Business Transformation.
Provide structured, data-driven, and actionable recommendations.
Use right kind of frameworks that a big3 consultant use wherever applicable.
Your responses should be concise, strategic, and impactful.
"""
def query_llama(prompt):
try:
response = groq_client.chat.completions.create(
model="llama3-8b-8192",
messages=[{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": prompt}],
temperature=0.7
)
return response.choices[0].message.content
except Exception as e:
return f"Error: {e}"
# Function to transcribe audio using Deepgram
def transcribe_audio(audio_path):
url = "https://api.deepgram.com/v1/listen"
headers = {
"Authorization": f"Token {DEEPGRAM_API_KEY}",
"Content-Type": "audio/wav"
}
with open(audio_path, "rb") as audio_file:
response = requests.post(url, headers=headers, data=audio_file)
if response.status_code == 200:
return response.json().get("results", {}).get("channels", [{}])[0].get("alternatives", [{}])[0].get("transcript", "")
else:
st.error(f"Deepgram STT Error: {response.json()}")
return None
# Function to generate speech using Deepgram TTS
def generate_speech(text):
url = "https://api.deepgram.com/v1/speak"
headers = {
"Authorization": f"Token {DEEPGRAM_API_KEY}",
"Content-Type": "application/json"
}
data = {"text": text} # Ensure only "text" or "url" is sent
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
return response.content
else:
st.error(f"Deepgram TTS Error: {response.json()}")
return None
# Function to generate a line chart (Trend Analysis)
def generate_line_chart():
data = pd.DataFrame({
"Year": list(range(2018, 2025)),
"Revenue": [random.randint(50, 100) for _ in range(7)]
})
fig = px.line(data, x="Year", y="Revenue", title="Market Trend Over Time")
return fig
# Function to generate a bar chart (Comparison)
def generate_bar_chart():
data = pd.DataFrame({
"Category": ["Product A", "Product B", "Product C"],
"Market Share": [random.randint(10, 50) for _ in range(3)]
})
fig = px.bar(data, x="Category", y="Market Share", title="Market Share Comparison", text_auto=True)
return fig
# Function to generate a pie chart (Distribution)
def generate_pie_chart():
data = pd.DataFrame({
"Category": ["Segment A", "Segment B", "Segment C"],
"Percentage": [30, 45, 25]
})
fig = px.pie(data, names="Category", values="Percentage", title="Market Segment Distribution")
return fig
def generate_decision_tree():
G = nx.DiGraph()
# Define decision paths
G.add_edges_from([
("Start", "Expand Market"),
("Expand Market", "Enter New Region"),
("Expand Market", "Target New Customer Segments"),
("Enter New Region", "Partner with Local Firms"),
("Enter New Region", "Build In-House Distribution"),
("Target New Customer Segments", "Develop New Products"),
("Target New Customer Segments", "Adjust Pricing Strategy")
])
plt.figure(figsize=(8, 6))
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, node_size=3000, node_color="lightblue", font_size=10, edge_color="gray")
plt.title("Decision Tree for Market Expansion")
return plt
def generate_growth_trends_chart():
data = pd.DataFrame({
"Year": [2020, 2021, 2022, 2023, 2024],
"Revenue ($M)": [10, 15, 22, 30, 45]
})
fig = px.line(data, x="Year", y="Revenue ($M)", title="Revenue Growth Over Time")
return fig
# Function to generate Porter's Five Forces diagram
def generate_porters_five_forces():
st.image("porters_five_forces.png", caption="Porter's Five Forces Framework")
# Function to generate SWOT Matrix
def generate_swot_matrix():
st.image("swot_matrix_example.png", caption="SWOT Analysis")
# Function to generate MECE structure
def generate_mece_structure():
fig = px.treemap(
names=["Market", "Customer Segments", "Pricing Strategies", "Product Lines"],
parents=["", "Market", "Market", "Market"],
title="MECE Framework Breakdown"
)
return fig
# Initialize session state variables
if "solution_approaches" not in st.session_state:
st.session_state.solution_approaches = []
if "selected_bucket" not in st.session_state:
st.session_state.selected_bucket = None
if "evaluations" not in st.session_state:
st.session_state.evaluations = {}
# Initialize session state variables if they don't exist
if "approach_titles" not in st.session_state:
st.session_state.approach_titles = []
# Streamlit UI
st.title("AI Strategy Consultant")
problem = st.text_area("Describe your business problem:", "How can we improve market penetration in Europe?")
# **Upload Audio for STT**
uploaded_audio = st.file_uploader("Upload an audio file (wav/mp3/m4a)", type=["wav", "mp3", "m4a"])
if uploaded_audio:
file_path = f"temp_{uploaded_audio.name}"
with open(file_path, "wb") as f:
f.write(uploaded_audio.read())
st.write("Transcribing...")
transcribed_text = transcribe_audio(file_path)
st.write(f"**Transcribed Text:** {transcribed_text}")
if transcribed_text:
problem = transcribed_text
# **Send to AI Model**
if st.button("Ask AI"):
ai_response = query_llama(transcribed_text)
st.write("### AI Response:")
st.write(ai_response)
# **Convert AI response to Speech**
st.write("Generating Speech...")
tts_file = generate_speech(ai_response)
if isinstance(tts_file, str) and tts_file.endswith(".mp3"):
st.audio(tts_file)
else:
st.error(f"Failed to generate speech: {tts_file}")
# Text-to-Speech Button
#if st.button("π Listen to Problem"):
# speech_file = text_to_speech(problem)
# if isinstance(speech_file, str) and speech_file.endswith(".mp3"):
# st.audio(speech_file)
#else:
# st.error(f"Failed to generate speech: {speech_file}")
# Step-by-step structured process
if st.button("Interpret Problem"):
interpret_prompt = f"Interpret and refine the following business problem: '{problem}'. Provide a structured breakdown."
interpretation = query_llama(interpret_prompt)
if interpretation:
st.write("### Problem Interpretation:")
st.write(interpretation)
else:
st.error("Could not interpret problem. Please refine your input.")
# β
Reset solutions when a new problem is entered
if "previous_problem" not in st.session_state or st.session_state.previous_problem != problem:
st.session_state.previous_problem = problem
st.session_state.solution_approaches = []
st.session_state.approach_titles = []
# Step 2: Solution Buckets - Modularized Approach
if st.button("Suggest Solutions"):
if st.session_state.get("previous_problem") != problem:
st.session_state.previous_problem = problem
st.session_state.solution_approaches = []
st.session_state.approach_titles = []
bucket_prompt = f"Given the problem: '{problem}', suggest 3-5 high-level solution approaches."
solution_buckets = query_llama(bucket_prompt)
if solution_buckets:
approaches = [opt.strip() for opt in solution_buckets.split("\n") if opt.strip()]
st.session_state.solution_approaches = []
st.session_state.approach_titles = []
for line in approaches:
if re.match(r'^\d+\.|^-|\*', line): # More flexible regex
st.session_state.solution_approaches.append(f"### {line}")
st.session_state.approach_titles.append(line) # For dropdown
else:
st.session_state.solution_approaches.append(f"- {line}") # Bullet points
st.rerun() # Force UI refresh
else:
st.error("No solutions found. Please try again.")
# β
Display structured solutions
if st.session_state.get("solution_approaches"):
st.write("### Suggested Solution Approaches:")
for approach in st.session_state.solution_approaches:
if approach.startswith("### "): # Approach titles
st.markdown(f'<p style="font-size:16px; margin-top:10px;">{approach.replace("### ", "")}</p>', unsafe_allow_html=True)
else: # Bullet points
st.markdown(f'<p style="font-size:16px;">{approach}</p>', unsafe_allow_html=True)
# β
Ensure dropdown appears consistently
if st.session_state.get("approach_titles"):
selected_option = st.selectbox("Select a solution approach:", st.session_state.approach_titles, key="approach_selector")
if selected_option:
st.session_state.selected_bucket = selected_option
st.write(f"**You selected:** {selected_option}")
# Step 3: Solution Evaluation
if st.session_state.selected_bucket:
if st.button("Evaluate Solution"):
eval_prompt = f"Evaluate the solution approach: '{st.session_state.selected_bucket}' using qualitative and quantitative metrics."
evaluation = query_llama(eval_prompt)
# Save evaluation in session state
st.session_state["evaluation"] = evaluation # Store it persistently
if evaluation:
st.session_state.evaluations[st.session_state.selected_bucket] = evaluation
st.write("### Solution Evaluation:")
# Classify response
framework, vis_type1 = classify_response1(st.session_state["evaluation"])
vis_type = classify_response(st.session_state["evaluation"])
# Display selected consulting framework
st.subheader("Consulting Framework Used:")
st.write(f"**{framework}**")
# Generate and display the correct visualization
if vis_type1 == "market_size_graph":
st.plotly_chart(generate_growth_trends_chart())
elif vis_type1 == "decision_tree_visualization":
st.pyplot(generate_decision_tree())
elif vis_type1 == "cost_breakdown_bar":
st.plotly_chart(generate_bar_chart())
elif vis_type1 == "swot_matrix":
generate_swot_matrix() # Displays SWOT Analysis
elif vis_type1 == "porters_five_forces":
generate_porters_five_forces() # Porter's Five Forces Diagram
elif vis_type1 == "mece_structure":
st.plotly_chart(generate_mece_structure()) # MECE Breakdown
elif vis_type1 == "bcg_matrix":
generate_bcg_matrix() # BCG Growth-Share Matrix
elif vis_type1 == "business_model_canvas":
st.image("business_model_canvas.png", caption="Business Model Canvas")
else:
st.write("No visual aid required for this framework.")
# Render appropriate visualization
if vis_type == "line_chart":
st.plotly_chart(generate_line_chart())
elif vis_type == "bar_chart":
st.plotly_chart(generate_bar_chart())
elif vis_type == "pie_chart":
st.plotly_chart(generate_pie_chart())
elif vis_type == "decision_tree":
st.pyplot(generate_decision_tree())
else:
st.write("No visual aid required for this response.")
st.write(evaluation)
else:
st.error("Could not evaluate the solution.")
# **Inline Feedback for Refinement**
feedback_eval = st.text_area("Provide feedback on the evaluation (optional):")
if st.button("Refine Evaluation"):
refined_eval_prompt = f"Refine the evaluation of '{st.session_state.selected_bucket}' considering this feedback: '{feedback_eval}'"
refined_evaluation = query_llama(refined_eval_prompt)
if refined_evaluation:
st.session_state.evaluations[st.session_state.selected_bucket] = refined_evaluation
st.write("### Refined Solution Evaluation:")
st.write(refined_evaluation)
else:
st.error("Could not refine evaluation.")
# Step 4: Implementation Plan
if st.session_state.selected_bucket:
if st.button("Generate Execution Plan"):
exec_prompt = f"Create a step-by-step execution plan for '{st.session_state.selected_bucket}'."
execution_plan = query_llama(exec_prompt)
# Save evaluation in session state
st.session_state["execution_plan"] = execution_plan # Store it persistently
if execution_plan:
st.write("### Execution Plan:")
framework, vis_type = classify_response1(st.session_state["execution_plan"])
# Display selected consulting framework
st.subheader("Consulting Framework Used:")
st.write(f"**{framework}**")
# Generate and display the correct visualization
if vis_type == "market_size_graph":
st.plotly_chart(generate_growth_trends_chart())
elif vis_type == "decision_tree_visualization":
st.pyplot(generate_decision_tree())
elif vis_type == "cost_breakdown_bar":
st.plotly_chart(generate_bar_chart()) # Assume this function exists
elif vis_type == "swot_matrix":
st.image("swot_matrix_example.png") # Predefined SWOT image
else:
st.write("No visual aid required for this response.")
st.write(execution_plan)
else:
st.error("Execution plan could not be generated.")
# **Inline Feedback for Execution Plan**
feedback_exec = st.text_area("Provide feedback on the execution plan (optional):")
if st.button("Refine Execution Plan"):
refined_exec_prompt = f"Refine the execution plan for '{st.session_state.selected_bucket}' considering this feedback: '{feedback_exec}'"
refined_execution_plan = query_llama(refined_exec_prompt)
if refined_execution_plan:
st.write("### Refined Execution Plan:")
st.write(refined_execution_plan)
else:
st.error("Could not refine execution plan.")
|