DecodeITyourself commited on
Commit
de05d78
Β·
verified Β·
1 Parent(s): ac9c57b

Upload 3 files

Browse files

AI Audio Denoiser – Remove Background Noise Instantly
This is a commercial-grade, proprietary audio denoising algorithm designed to clean noisy audio clips using AI and DSP.

🎯 Ideal for:

Podcasters, YouTubers, and streamers

Call center recordings and voice notes

SaaS platforms with noisy audio inputs

🧠 Built with [ConvTasNet / FFT / Custom DSP]
βš™οΈ Available as API, SDK, or on-premises solution

![audiodenoiser.jpg](https://cdn-uploads.huggingface.co/production/uploads/683ab8e473b6f41da65f0150/tpsDYvG3mS1IqyVo7z910.jpeg)

πŸ‘‰ Contact us for integration or licensing: itsdevansh57@gmail.com
πŸ” This demo is for evaluation only. All rights reserved.

Files changed (3) hide show
  1. README.md +7 -14
  2. app.py +86 -0
  3. requirements.txt +7 -0
README.md CHANGED
@@ -1,14 +1,7 @@
1
- ---
2
- title: Audio Denoiser
3
- emoji: πŸŒ–
4
- colorFrom: blue
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 5.32.0
8
- app_file: app.py
9
- pinned: false
10
- license: other
11
- short_description: 'AI Audio Denoiser – Removes Background Noise '
12
- ---
13
-
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ # 🎧 ConvTasNet AI Audio Denoiser
2
+
3
+ Upload noisy audio clips to get clean, denoised audio using a state-of-the-art ConvTasNet model.
4
+
5
+ > ⚠️ This demo is for evaluation only. Commercial use is prohibited without permission.
6
+
7
+ Contact: itsdevansh57@gmail.com
 
 
 
 
 
 
 
app.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchaudio
3
+ import soundfile as sf
4
+ import librosa
5
+ import librosa.display
6
+ import matplotlib.pyplot as plt
7
+ import numpy as np
8
+ from asteroid.models import BaseModel
9
+ import gradio as gr
10
+ import os
11
+ import uuid
12
+
13
+ # Load pretrained ConvTasNet model
14
+ print("Loading model...")
15
+ model = BaseModel.from_pretrained("JorisCos/ConvTasNet_Libri2Mix_sepnoisy_16k")
16
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
+ model = model.to(device).eval()
18
+ print("Model loaded successfully βœ…")
19
+
20
+ def denoise_and_visualize(audio_path):
21
+ if audio_path is None:
22
+ return "Please upload an audio file.", None, None, None
23
+
24
+ try:
25
+ # Unique ID to avoid overwriting files
26
+ uid = str(uuid.uuid4())
27
+ output_dir = "outputs"
28
+ os.makedirs(output_dir, exist_ok=True)
29
+
30
+ # Load & resample input to 16kHz mono
31
+ wav, sr = torchaudio.load(audio_path)
32
+ if sr != 16000:
33
+ wav = torchaudio.functional.resample(wav, sr, 16000)
34
+ wav = wav.mean(dim=0, keepdim=True).to(device)
35
+
36
+ # Model inference
37
+ with torch.no_grad():
38
+ est_sources = model.separate(wav)
39
+ clean_audio = est_sources[:, 0, :].cpu().squeeze().numpy()
40
+
41
+ # Save output audio
42
+ audio_output = os.path.join(output_dir, f"cleaned_{uid}.wav")
43
+ sf.write(audio_output, clean_audio, 16000)
44
+
45
+ # Create spectrograms
46
+ orig, _ = librosa.load(audio_path, sr=sr)
47
+ den, _ = librosa.load(audio_output, sr=16000)
48
+
49
+ plt.figure(figsize=(12, 5))
50
+ plt.subplot(1, 2, 1)
51
+ D_orig = librosa.amplitude_to_db(np.abs(librosa.stft(orig)), ref=np.max)
52
+ librosa.display.specshow(D_orig, sr=sr, y_axis='log', x_axis='time')
53
+ plt.title("Original Noisy")
54
+ plt.colorbar(format='%+2.0f dB')
55
+
56
+ plt.subplot(1, 2, 2)
57
+ D_clean = librosa.amplitude_to_db(np.abs(librosa.stft(den)), ref=np.max)
58
+ librosa.display.specshow(D_clean, sr=16000, y_axis='log', x_axis='time')
59
+ plt.title("Denoised Output")
60
+ plt.colorbar(format='%+2.0f dB')
61
+
62
+ plt.tight_layout()
63
+ spectrogram_output = os.path.join(output_dir, f"spectrogram_{uid}.png")
64
+ plt.savefig(spectrogram_output)
65
+ plt.close()
66
+
67
+ return "βœ… Denoising complete!", audio_output, spectrogram_output, (16000, clean_audio)
68
+
69
+ except Exception as e:
70
+ return f"Error processing audio: {e}", None, None, None
71
+
72
+ # Gradio UI
73
+ iface = gr.Interface(
74
+ fn=denoise_and_visualize,
75
+ inputs=gr.Audio(type="filepath", label="Upload Noisy Audio"),
76
+ outputs=[
77
+ gr.Textbox(label="Status"),
78
+ gr.Audio(label="Denoised Audio"),
79
+ gr.Image(label="Spectrogram Comparison"),
80
+ gr.Audio(label="Denoised Audio (16kHz)"),
81
+ ],
82
+ title="ConvTasNet AI Audio Denoiser",
83
+ description="Upload a noisy audio file. This app removes background noise using ConvTasNet. Spectrograms show before & after.",
84
+ )
85
+
86
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ torch
2
+ torchaudio
3
+ gradio
4
+ librosa
5
+ matplotlib
6
+ soundfile
7
+ asteroid