Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
3 |
+
import torch
|
4 |
+
import re
|
5 |
+
from PIL import Image
|
6 |
+
import spaces # Add spaces import for Hugging Face Spaces
|
7 |
+
|
8 |
+
# Model information
|
9 |
+
MODEL_ID = "DeepMount00/SmolVLM-Base-ocr_base"
|
10 |
+
OCR_INSTRUCTION = "Sei un assistente esperto di OCR, converti il testo in formato MD."
|
11 |
+
|
12 |
+
# Load processor and model
|
13 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
14 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
15 |
+
MODEL_ID,
|
16 |
+
torch_dtype=torch.bfloat16,
|
17 |
+
).to("cuda") # Ensure model loads on CUDA for Spaces
|
18 |
+
|
19 |
+
@spaces.GPU # Add spaces.GPU decorator for GPU acceleration
|
20 |
+
def process_image(image, progress=gr.Progress()):
|
21 |
+
if image is None:
|
22 |
+
gr.Error("Please upload an image to process.")
|
23 |
+
return "Please upload an image to process."
|
24 |
+
|
25 |
+
progress(0, desc="Starting OCR processing...")
|
26 |
+
|
27 |
+
# Convert from Gradio's image format to PIL
|
28 |
+
if isinstance(image, str):
|
29 |
+
image = Image.open(image).convert("RGB")
|
30 |
+
|
31 |
+
progress(0.2, desc="Preparing image...")
|
32 |
+
|
33 |
+
# Create input messages - note that the instruction is included as part of the user message
|
34 |
+
messages = [
|
35 |
+
{
|
36 |
+
"role": "user",
|
37 |
+
"content": [
|
38 |
+
{"type": "image"},
|
39 |
+
{"type": "text", "text": OCR_INSTRUCTION}
|
40 |
+
]
|
41 |
+
},
|
42 |
+
]
|
43 |
+
|
44 |
+
# Prepare inputs
|
45 |
+
progress(0.4, desc="Processing with model...")
|
46 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
47 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
48 |
+
inputs = inputs.to('cuda') # Move inputs to CUDA
|
49 |
+
|
50 |
+
# Generate outputs
|
51 |
+
progress(0.6, desc="Generating text...")
|
52 |
+
with torch.no_grad():
|
53 |
+
generated_ids = model.generate(
|
54 |
+
**inputs,
|
55 |
+
max_new_tokens=4096,
|
56 |
+
temperature=0.1
|
57 |
+
)
|
58 |
+
|
59 |
+
# Decode outputs
|
60 |
+
progress(0.8, desc="Finalizing results...")
|
61 |
+
generated_text = processor.batch_decode(
|
62 |
+
generated_ids,
|
63 |
+
skip_special_tokens=True
|
64 |
+
)[0]
|
65 |
+
|
66 |
+
# Extract only the assistant's response
|
67 |
+
# Remove any "User:" and "Assistant:" prefixes if present
|
68 |
+
cleaned_text = generated_text
|
69 |
+
|
70 |
+
# Remove user prompt and "User:" prefix if present
|
71 |
+
user_pattern = r"User:.*?(?=Assistant:|$)"
|
72 |
+
cleaned_text = re.sub(user_pattern, "", cleaned_text, flags=re.DOTALL)
|
73 |
+
|
74 |
+
# Remove "Assistant:" prefix if present
|
75 |
+
assistant_pattern = r"Assistant:\s*"
|
76 |
+
cleaned_text = re.sub(assistant_pattern, "", cleaned_text)
|
77 |
+
|
78 |
+
# Clean up any extra whitespace
|
79 |
+
cleaned_text = cleaned_text.strip()
|
80 |
+
|
81 |
+
progress(1.0, desc="Done!")
|
82 |
+
return cleaned_text # Return only the cleaned text
|
83 |
+
|
84 |
+
|
85 |
+
# Create Gradio interface
|
86 |
+
with gr.Blocks() as demo:
|
87 |
+
gr.Markdown("# OCR to Markdown Converter")
|
88 |
+
gr.Markdown(
|
89 |
+
f"Upload an image containing text to convert it to Markdown format. This tool uses the {MODEL_ID} model with a fixed instruction: '{OCR_INSTRUCTION}'")
|
90 |
+
|
91 |
+
with gr.Row():
|
92 |
+
with gr.Column(scale=1):
|
93 |
+
input_image = gr.Image(type="pil", label="Upload an image containing text")
|
94 |
+
submit_btn = gr.Button("Process Image", variant="primary")
|
95 |
+
with gr.Column(scale=1):
|
96 |
+
output_text = gr.Textbox(label="Raw Text", lines=15)
|
97 |
+
copy_btn = gr.Button("Select All Text", variant="secondary")
|
98 |
+
|
99 |
+
submit_btn.click(
|
100 |
+
fn=process_image,
|
101 |
+
inputs=input_image,
|
102 |
+
outputs=output_text,
|
103 |
+
show_progress="full",
|
104 |
+
queue=True # Enable queue for Spaces
|
105 |
+
)
|
106 |
+
|
107 |
+
def copy_to_clipboard(text):
|
108 |
+
return text
|
109 |
+
|
110 |
+
copy_btn.click(
|
111 |
+
fn=copy_to_clipboard,
|
112 |
+
inputs=output_text,
|
113 |
+
outputs=output_text
|
114 |
+
)
|
115 |
+
|
116 |
+
# Launch the app with default Spaces configuration (no need for local file paths)
|
117 |
+
demo.launch()
|