Sharp / app.py
Dekonstruktio's picture
Update app.py
e615212 verified
import gradio as gr
import spaces
import torch
from PIL import Image
from RealESRGAN import RealESRGAN
import time
from datetime import timedelta as td
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model2 = RealESRGAN(device, scale=2)
model2.load_weights('weights/RealESRGAN_x2.pth', download=True)
model4 = RealESRGAN(device, scale=4)
model4.load_weights('weights/RealESRGAN_x4.pth', download=True)
model8 = RealESRGAN(device, scale=8)
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
@spaces.GPU(duration=13)
def inference(image, size):
start_load = time.time()
global model2
global model4
global model8
if image is None:
raise gr.Error("Image not uploaded")
if torch.cuda.is_available():
torch.cuda.empty_cache()
if size == '2x':
try:
result = model2.predict(image.convert('RGB'))
except torch.cuda.OutOfMemoryError as e:
print(e)
model2 = RealESRGAN(device, scale=2)
model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
result = model2.predict(image.convert('RGB'))
elif size == '4x':
try:
result = model4.predict(image.convert('RGB'))
except torch.cuda.OutOfMemoryError as e:
print(e)
model4 = RealESRGAN(device, scale=4)
model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
result = model2.predict(image.convert('RGB'))
else:
try:
result = model8.predict(image.convert('RGB'))
except torch.cuda.OutOfMemoryError as e:
print(e)
model8 = RealESRGAN(device, scale=8)
model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
result = model2.predict(image.convert('RGB'))
print(f"Image size ({device}): {size}, time: {td(seconds=int(time.time() - start_load))} ... OK")
return result
title = ""
description = ""
article = ""
gr.Interface(inference,
[gr.Image(type="pil"),
gr.Radio(["2x", "4x", "8x"],
type="value",
value="4x",
label="Resolution model")],
gr.Image(type="pil", label="Output"),
title=title,
description=description,
article=article,
examples=[],
flagging_mode="never",
cache_mode="lazy",
).queue(api_open=True).launch(show_error=True, show_api=True, mcp_server=False)