import gradio as gr import spaces import torch from PIL import Image from RealESRGAN import RealESRGAN import time from datetime import timedelta as td device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model2 = RealESRGAN(device, scale=2) model2.load_weights('weights/RealESRGAN_x2.pth', download=True) model4 = RealESRGAN(device, scale=4) model4.load_weights('weights/RealESRGAN_x4.pth', download=True) model8 = RealESRGAN(device, scale=8) model8.load_weights('weights/RealESRGAN_x8.pth', download=True) @spaces.GPU(duration=13) def inference(image, size): start_load = time.time() global model2 global model4 global model8 if image is None: raise gr.Error("Image not uploaded") if torch.cuda.is_available(): torch.cuda.empty_cache() if size == '2x': try: result = model2.predict(image.convert('RGB')) except torch.cuda.OutOfMemoryError as e: print(e) model2 = RealESRGAN(device, scale=2) model2.load_weights('weights/RealESRGAN_x2.pth', download=False) result = model2.predict(image.convert('RGB')) elif size == '4x': try: result = model4.predict(image.convert('RGB')) except torch.cuda.OutOfMemoryError as e: print(e) model4 = RealESRGAN(device, scale=4) model4.load_weights('weights/RealESRGAN_x4.pth', download=False) result = model2.predict(image.convert('RGB')) else: try: result = model8.predict(image.convert('RGB')) except torch.cuda.OutOfMemoryError as e: print(e) model8 = RealESRGAN(device, scale=8) model8.load_weights('weights/RealESRGAN_x8.pth', download=False) result = model2.predict(image.convert('RGB')) print(f"Image size ({device}): {size}, time: {td(seconds=int(time.time() - start_load))} ... OK") return result title = "" description = "" article = "" gr.Interface(inference, [gr.Image(type="pil"), gr.Radio(["2x", "4x", "8x"], type="value", value="4x", label="Resolution model")], gr.Image(type="pil", label="Output"), title=title, description=description, article=article, examples=[], flagging_mode="never", cache_mode="lazy", ).queue(api_open=True).launch(show_error=True, show_api=True, mcp_server=False)