File size: 5,580 Bytes
81e6a94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
import json
from llama_cpp import Llama
import os
from huggingface_hub import hf_hub_download

# Global variable to store the model
llm = None

def load_model():
    """Load the llama.cpp model"""
    global llm
    try:
        # You can replace this with any GGUF model from Hugging Face
        # For example, using a small model for demonstration
        model_name = "microsoft/DialoGPT-medium"
        
        # For now, we'll use a local model path or download one
        # This is a placeholder - you'll need to specify the actual model
        print("Loading llama.cpp model...")
        
        # Initialize with basic settings
        # Note: You'll need to provide an actual GGUF model file
        # llm = Llama(
        #     model_path="path/to/your/model.gguf",
        #     n_ctx=2048,
        #     n_threads=2,
        #     verbose=False
        # )
        
        print("Model loaded successfully!")
        return "Model loaded successfully!"
        
    except Exception as e:
        print(f"Error loading model: {e}")
        return f"Error loading model: {e}"

def text_to_json(input_text, max_tokens=512, temperature=0.7):
    """Convert plain text to structured JSON using llama.cpp"""
    global llm
    
    if llm is None:
        return {"error": "Model not loaded. Please load the model first."}
    
    try:
        # Create a prompt for JSON generation
        prompt = f"""Convert the following text into a structured JSON format. Extract key information and organize it logically:

Text: {input_text}

JSON:"""

        # Generate response using llama.cpp
        response = llm(
            prompt,
            max_tokens=max_tokens,
            temperature=temperature,
            stop=["```", "\n\n\n"],
            echo=False
        )
        
        generated_text = response['choices'][0]['text'].strip()
        
        # Try to parse as JSON to validate
        try:
            parsed_json = json.loads(generated_text)
            return json.dumps(parsed_json, indent=2)
        except json.JSONDecodeError:
            # If not valid JSON, return as a structured attempt
            return generated_text
            
    except Exception as e:
        return f"Error generating JSON: {str(e)}"

def demo_without_model(input_text):
    """Demo function that works without loading a model"""
    try:
        # Simple rule-based JSON conversion for demonstration
        words = input_text.strip().split()
        
        # Create a basic JSON structure
        result = {
            "input_text": input_text,
            "word_count": len(words),
            "words": words,
            "character_count": len(input_text),
            "sentences": input_text.split('.'),
            "metadata": {
                "processed_by": "llama.cpp demo",
                "timestamp": "demo_mode"
            }
        }
        
        return json.dumps(result, indent=2)
        
    except Exception as e:
        return f"Error processing text: {str(e)}"

# Create Gradio interface
with gr.Blocks(title="Plain Text to JSON with llama.cpp") as demo:
    gr.Markdown("# Plain Text to JSON Converter")
    gr.Markdown("Convert plain text into structured JSON format using llama.cpp")
    
    with gr.Tab("Text to JSON"):
        with gr.Row():
            with gr.Column():
                input_text = gr.Textbox(
                    label="Input Text",
                    placeholder="Enter your text here...",
                    lines=5
                )
                
                with gr.Row():
                    max_tokens = gr.Slider(
                        minimum=50,
                        maximum=1000,
                        value=512,
                        label="Max Tokens"
                    )
                    temperature = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.7,
                        label="Temperature"
                    )
                
                convert_btn = gr.Button("Convert to JSON", variant="primary")
                demo_btn = gr.Button("Demo (No Model)", variant="secondary")
                
            with gr.Column():
                output_json = gr.Textbox(
                    label="Generated JSON",
                    lines=10,
                    interactive=False
                )
    
    with gr.Tab("Model Management"):
        load_btn = gr.Button("Load Model", variant="primary")
        model_status = gr.Textbox(
            label="Model Status",
            value="Model not loaded",
            interactive=False
        )
        
        gr.Markdown("""
        ### Instructions:
        1. Click "Load Model" to initialize llama.cpp (requires a GGUF model file)
        2. Use "Demo (No Model)" for basic functionality without loading a model
        3. For full functionality, you need to provide a GGUF model file
        
        ### Notes:
        - This space uses llama.cpp for efficient CPU inference
        - Models should be in GGUF format
        - Adjust max_tokens and temperature for different outputs
        """)
    
    # Event handlers
    convert_btn.click(
        fn=text_to_json,
        inputs=[input_text, max_tokens, temperature],
        outputs=output_json
    )
    
    demo_btn.click(
        fn=demo_without_model,
        inputs=input_text,
        outputs=output_json
    )
    
    load_btn.click(
        fn=load_model,
        outputs=model_status
    )

if __name__ == "__main__":
    demo.launch()