Spaces:
Running
Running
File size: 6,798 Bytes
81e6a94 44b5c36 81e6a94 44b5c36 81e6a94 44b5c36 81e6a94 44b5c36 81e6a94 44b5c36 81e6a94 44b5c36 81e6a94 44b5c36 81e6a94 44b5c36 81e6a94 44b5c36 81e6a94 44b5c36 81e6a94 44b5c36 81e6a94 44b5c36 81e6a94 44b5c36 81e6a94 44b5c36 81e6a94 44b5c36 81e6a94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import gradio as gr
import json
from llama_cpp import Llama
import os
from huggingface_hub import hf_hub_download
from config import get_model_config, get_generation_config, get_recommended_model
# Global variable to store the model
llm = None
def load_model():
"""Load the llama.cpp model"""
global llm
try:
print("Loading Osmosis Structure model...")
# Get model info and config
model_info = get_recommended_model()
model_config = get_model_config()
# Create models directory
os.makedirs("./models", exist_ok=True)
# Download the Osmosis model
print(f"Downloading {model_info['name']} ({model_info['size']})...")
model_path = hf_hub_download(
repo_id=model_info['repo_id'],
filename=model_info['filename'],
cache_dir="./models",
resume_download=True
)
print(f"Model downloaded to: {model_path}")
print("Initializing llama.cpp...")
# Initialize llama.cpp with the downloaded model
llm = Llama(
model_path=model_path,
**model_config
)
print("β
Osmosis Structure model loaded successfully!")
return f"β
Model loaded: {model_info['name']}\nPath: {model_path}\nDescription: {model_info['description']}"
except Exception as e:
error_msg = f"β Error loading model: {e}"
print(error_msg)
return error_msg
def text_to_json(input_text, max_tokens=512, temperature=0.7):
"""Convert plain text to structured JSON using llama.cpp"""
global llm
if llm is None:
return "β Model not loaded. Please load the model first."
try:
# Create a structured prompt optimized for the Osmosis model
prompt = f"""<|system|>
You are a helpful assistant that converts unstructured text into well-formatted JSON. Extract key information and organize it into a logical structure.
<|user|>
Convert this text to JSON format:
{input_text}
<|assistant|>
```json"""
# Get generation config and override with user settings
gen_config = get_generation_config()
gen_config.update({
"max_tokens": max_tokens,
"temperature": temperature
})
# Generate response using llama.cpp
response = llm(
prompt,
**gen_config,
echo=False
)
generated_text = response['choices'][0]['text'].strip()
# Clean up the response - remove markdown formatting if present
if generated_text.startswith('```json'):
generated_text = generated_text[7:]
if generated_text.endswith('```'):
generated_text = generated_text[:-3]
generated_text = generated_text.strip()
# Try to parse as JSON to validate
try:
parsed_json = json.loads(generated_text)
return json.dumps(parsed_json, indent=2)
except json.JSONDecodeError:
# If not valid JSON, try to clean it up or return as is
return f"Generated (may need cleanup):\n{generated_text}"
except Exception as e:
return f"β Error generating JSON: {str(e)}"
def demo_without_model(input_text):
"""Demo function that works without loading a model"""
try:
# Simple rule-based JSON conversion for demonstration
words = input_text.strip().split()
# Create a basic JSON structure
result = {
"input_text": input_text,
"word_count": len(words),
"words": words,
"character_count": len(input_text),
"sentences": input_text.split('.'),
"metadata": {
"processed_by": "llama.cpp demo",
"timestamp": "demo_mode"
}
}
return json.dumps(result, indent=2)
except Exception as e:
return f"Error processing text: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="Plain Text to JSON with llama.cpp") as demo:
gr.Markdown("# Plain Text to JSON Converter")
gr.Markdown("Convert plain text into structured JSON format using llama.cpp and Osmosis Structure model")
with gr.Tab("Text to JSON"):
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter your text here...",
lines=5
)
with gr.Row():
max_tokens = gr.Slider(
minimum=50,
maximum=1000,
value=512,
label="Max Tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
label="Temperature"
)
convert_btn = gr.Button("Convert to JSON", variant="primary")
demo_btn = gr.Button("Demo (No Model)", variant="secondary")
with gr.Column():
output_json = gr.Textbox(
label="Generated JSON",
lines=10,
interactive=False
)
with gr.Tab("Model Management"):
load_btn = gr.Button("Load Model", variant="primary")
model_status = gr.Textbox(
label="Model Status",
value="Model not loaded",
interactive=False
)
gr.Markdown("""
### Instructions:
1. Click "Load Model" to download and initialize the Osmosis Structure model
2. Use "Demo (No Model)" for basic functionality without loading the AI model
3. The Osmosis model is optimized for structured data extraction and JSON generation
### Notes:
- Uses llama.cpp for efficient CPU inference
- Osmosis Structure 0.6B model (~1.2GB) will be downloaded automatically
- Model is specialized for converting unstructured text to structured formats
- Adjust max_tokens and temperature for different output styles
""")
# Event handlers
convert_btn.click(
fn=text_to_json,
inputs=[input_text, max_tokens, temperature],
outputs=output_json
)
demo_btn.click(
fn=demo_without_model,
inputs=input_text,
outputs=output_json
)
load_btn.click(
fn=load_model,
outputs=model_status
)
if __name__ == "__main__":
demo.launch() |