Update app.py
Browse files
app.py
CHANGED
@@ -6,50 +6,64 @@ from transformers import pipeline
|
|
6 |
import torch
|
7 |
from huggingface_hub import InferenceClient
|
8 |
import os
|
|
|
9 |
|
10 |
# Initialize the InferenceClient for PHI 3
|
11 |
client = InferenceClient(
|
12 |
"microsoft/Phi-3.5-mini-instruct", # Update this to the correct model name for PHI 3
|
13 |
token=os.getenv("HF_API_TOKEN", "")
|
14 |
-
# You can configure this API token through the Hugging Face Secrets
|
15 |
)
|
16 |
|
17 |
# Check if a GPU is available and use it if possible
|
18 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
19 |
|
20 |
# Initialize the Whisper pipeline
|
21 |
-
whisper = pipeline('automatic-speech-recognition', model='openai/whisper-tiny', device=
|
22 |
|
23 |
# Instructions (can be set through Hugging Face Secrets or hardcoded)
|
24 |
instructions = os.getenv("INST", "Your default instructions here.")
|
25 |
|
26 |
def query_phi(prompt):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def transcribe_and_query(audio):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
# Query Microsoft PHI 3 with the transcribed text
|
41 |
-
phi_response = query_phi(transcription)
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# Create Gradio interface
|
46 |
iface = gr.Interface(
|
47 |
fn=transcribe_and_query,
|
48 |
inputs=gr.Audio(type="filepath"),
|
49 |
outputs=["text", "text"],
|
50 |
-
title="Scam Call
|
51 |
-
description="Upload your recorded call to see if it is a scam or not
|
52 |
)
|
53 |
|
54 |
# Launch the interface
|
55 |
-
iface.launch(share=True)
|
|
|
6 |
import torch
|
7 |
from huggingface_hub import InferenceClient
|
8 |
import os
|
9 |
+
import librosa
|
10 |
|
11 |
# Initialize the InferenceClient for PHI 3
|
12 |
client = InferenceClient(
|
13 |
"microsoft/Phi-3.5-mini-instruct", # Update this to the correct model name for PHI 3
|
14 |
token=os.getenv("HF_API_TOKEN", "")
|
|
|
15 |
)
|
16 |
|
17 |
# Check if a GPU is available and use it if possible
|
18 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
19 |
|
20 |
# Initialize the Whisper pipeline
|
21 |
+
whisper = pipeline('automatic-speech-recognition', model='openai/whisper-tiny', device=device)
|
22 |
|
23 |
# Instructions (can be set through Hugging Face Secrets or hardcoded)
|
24 |
instructions = os.getenv("INST", "Your default instructions here.")
|
25 |
|
26 |
def query_phi(prompt):
|
27 |
+
print("Sending request to PHI 3 API...")
|
28 |
+
response = ""
|
29 |
+
try:
|
30 |
+
for message in client.chat_completion(
|
31 |
+
messages=[{"role": "user", "content": f"{instructions}\n{prompt}"}],
|
32 |
+
max_tokens=500,
|
33 |
+
stream=True,
|
34 |
+
):
|
35 |
+
response += message.choices[0].delta.content
|
36 |
+
except Exception as e:
|
37 |
+
print("Error in PHI 3 API:", e)
|
38 |
+
return "PHI 3 API Error: " + str(e)
|
39 |
+
|
40 |
+
return response
|
41 |
|
42 |
def transcribe_and_query(audio):
|
43 |
+
try:
|
44 |
+
# Load the audio file as waveform
|
45 |
+
audio_data, sr = librosa.load(audio, sr=16000)
|
|
|
|
|
46 |
|
47 |
+
# Transcribe using Whisper
|
48 |
+
transcription = whisper(audio_data)["text"]
|
49 |
+
transcription = "Prompt : " + transcription
|
50 |
+
|
51 |
+
# Query Microsoft PHI 3 with the transcribed text
|
52 |
+
phi_response = query_phi(transcription)
|
53 |
+
|
54 |
+
return transcription, phi_response
|
55 |
+
|
56 |
+
except Exception as e:
|
57 |
+
return f"Error processing audio: {str(e)}", "No response from PHI 3"
|
58 |
|
59 |
# Create Gradio interface
|
60 |
iface = gr.Interface(
|
61 |
fn=transcribe_and_query,
|
62 |
inputs=gr.Audio(type="filepath"),
|
63 |
outputs=["text", "text"],
|
64 |
+
title="Scam Call Detector with BEEP",
|
65 |
+
description="Upload your recorded call to see if it is a scam or not.\n Stay Safe, Stay Secure."
|
66 |
)
|
67 |
|
68 |
# Launch the interface
|
69 |
+
iface.launch(share=True)
|