from fastapi import FastAPI from pydantic import BaseModel from typing import List from llama_cpp import Llama app = FastAPI() llm = Llama( model_path="phi-2.Q4_K_M.gguf", n_ctx=2048, n_threads=2 ) class Message(BaseModel): role: str content: str class ChatRequest(BaseModel): model: str messages: List[Message] temperature: float = 0.7 max_tokens: int = 256 @app.post("/v1/chat/completions") async def chat_completions(req: ChatRequest): prompt = "\n".join([f"{m.role}: {m.content}" for m in req.messages]) + "\nassistant:" output = llm( prompt, max_tokens=req.max_tokens, temperature=req.temperature, stop=["user:", "assistant:"] ) text = output["choices"][0]["text"] return { "id": "chatcmpl-123", "object": "chat.completion", "choices": [{ "index": 0, "message": {"role": "assistant", "content": text}, "finish_reason": "stop" }], "model": req.model }