Spaces:
Running
Running
File size: 8,956 Bytes
fecab9d ee15f4a fecab9d ee15f4a fecab9d ee15f4a fecab9d ee15f4a fecab9d ee15f4a fecab9d ee15f4a fecab9d ee15f4a fecab9d ee15f4a fecab9d ee15f4a fecab9d ee15f4a fecab9d ee15f4a fecab9d ee15f4a fecab9d ee15f4a fecab9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
""" app.py
Question / answer over a collection of PDF documents from OECD.org.
PDF text extraction:
- pypdf
Retrieval model:
- LanceDB: support for hybrid search search with reranking of results.
- Full text search (lexical): BM25
- Vector search (semantic dense vectors): BAAI/bge-m3
Rerankers:
- ColBERT, cross encoder, reciprocal rank fusion, AnswerDotAI
Generation:
- Mistral
:author: Didier Guillevic
:date: 2024-12-28
"""
import gradio as gr
import lancedb
import llm_utils
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
#
# LanceDB with the indexed documents
#
# Connect to the database
lance_db = lancedb.connect("lance.db")
lance_tbl = lance_db.open_table("documents")
# Document schema
class Document(lancedb.pydantic.LanceModel):
text: str
vector: lancedb.pydantic.Vector(1024)
file_name: str
num_pages: int
creation_date: str
modification_date: str
#
# Retrieval: query types and reranker types
#
query_types = {
'lexical': 'fts',
'semantic': 'vector',
'hybrid': 'hybrid',
}
# Define a few rerankers
colbert_reranker = lancedb.rerankers.ColbertReranker(column='text')
answerai_reranker = lancedb.rerankers.AnswerdotaiRerankers(column='text')
crossencoder_reranker = lancedb.rerankers.CrossEncoderReranker(column='text')
reciprocal_rank_fusion_reranker = lancedb.rerankers.RRFReranker() # hybrid search only
reranker_types = {
'ColBERT': colbert_reranker,
'cross encoder': crossencoder_reranker,
'AnswerAI': answerai_reranker,
'Reciprocal Rank Fusion': reciprocal_rank_fusion_reranker
}
def search_table(
table: lancedb.table,
query: str,
query_type: str,
reranker_name: str,
filter_year: int,
top_k: int=5,
overfetch_factor: int=2
):
# Get the instance of reranker
reranker = reranker_types.get(reranker_name)
if reranker is None:
logger.error(f"Invalid reranker name: {reranker_name}")
raise ValueError(f"Invalid reranker selected: {reranker_name}")
if query_type in ["vector", "fts"]:
if reranker == reciprocal_rank_fusion_reranker:
# reciprocal is for 'hybrid' search type only
reranker = crossencoder_reranker
results = (
table.search(query, query_type=query_type)
.where(f"creation_date >= '{filter_year}'", prefilter=True)
.limit(top_k * overfetch_factor)
.rerank(reranker=reranker)
.limit(top_k)
.to_list() # to get access to '_relevance_score'
#.to_pydantic(Document)
)
elif query_type == "hybrid":
results = (
table.search(query, query_type=query_type)
.where(f"creation_date >= '{filter_year}'", prefilter=True)
.limit(top_k * overfetch_factor)
.rerank(reranker=reranker)
.limit(top_k)
.to_list() # to get access to '_relevance_score'
#.to_pydantic(Document)
)
return results[:top_k]
#
# Generatton: query + context --> response
#
def create_bulleted_list(texts: list[str], scores: list[float]=None) -> str:
"""
This function takes a list of strings and returns HTML with a bulleted list.
"""
html_items = []
if scores is not None:
for text, score in zip(texts, scores):
html_items.append(f"<li>(Score={score:.2f})\t{text}</li>")
else:
for text in texts:
html_items.append(f"<li>{text}</li>")
return "<ul>" + "".join(html_items) + "</ul>"
def generate_response(
query: str,
query_type: str,
reranker_name: str,
filter_year: int,
top_k: int
) -> list[str, str, str]:
"""Generate a response given query, search type and reranker.
Args:
Returns:
- the response given the snippets extracted from the database
- (html string): the references (origin of the snippets of text used to generate the answer)
- (html string): the snippets of text used to generate the answer
"""
# Get results from LanceDB
results = search_table(
lance_tbl,
query=query,
query_type=query_type,
reranker_name=reranker_name,
filter_year=filter_year,
top_k=top_k
)
references = [result['file_name'] for result in results]
references_html = "<h4>References</h4>\n" + create_bulleted_list(references)
snippets = [result['text'] for result in results]
scores = [result['_relevance_score'] for result in results]
snippets_html = "<h4>Snippets</h4>\n" + create_bulleted_list(snippets, scores)
# Generate the reponse from the LLM
stream_reponse = llm_utils.generate_chat_response_streaming(
query, '\n\n'.join(snippets)
)
model_response = ""
for chunk in stream_reponse:
model_response += chunk.data.choices[0].delta.content
yield model_response, references_html, snippets_html
#
# User interface
#
with gr.Blocks() as demo:
gr.Markdown("""
# Hybrid search / reranking / Mistral
Document collection: OECD documents on international tax crimes.
""")
# Inputs: question
question = gr.Textbox(
label="Question to answer",
placeholder=""
)
# Response / references / snippets
response = gr.Textbox(
label="Response",
placeholder=""
)
with gr.Accordion("References & snippets", open=False):
references = gr.HTML(label="References")
snippets = gr.HTML(label="Snippets")
# Button
with gr.Row():
response_button = gr.Button("Submit", variant='primary')
clear_button = gr.Button("Clear", variant='secondary')
# Additional inputs
query_type = gr.Dropdown(
choices=query_types.items(),
value='hybrid',
label='Query type',
render=False
)
reranker_name = gr.Dropdown(
choices=list(reranker_types.keys()),
value='cross encoder',
label='Reranker',
render=False
)
filter_year = gr.Slider(
minimum=2005, maximum=2020, value=2005, step=1,
label='Creation date >=', render=False
)
top_k = gr.Slider(
minimum=2, maximum=10, value=5, step=1,
label='Top k result', render=False
)
with gr.Row():
# Example questions given default provided PDF file
with gr.Accordion("Sample questions", open=False):
gr.Examples(
[
["What is the OECD's role in combating offshore tax evasion?",],
["What are the key tools used in fighting offshore tax evasion?",],
['What are "High Net Worth Individuals" (HNWIs) and how do they relate to tax compliance efforts?',],
["What is the significance of international financial centers (IFCs) in the context of tax evasion?",],
["What is being done to address the role of professional enablers in facilitating tax evasion?",],
["How does the OECD measure the effectiveness of international efforts to fight offshore tax evasion?",],
['What are the "Ten Global Principles" for fighting tax crime?',],
["What are some recent developments in the fight against offshore tax evasion?",],
],
inputs=[question, query_type, reranker_name, filter_year, top_k],
outputs=[response, references, snippets],
fn=generate_response,
cache_examples=False,
label="Sample questions"
)
# Additional inputs: search parameters
with gr.Accordion("Search parameters", open=False):
with gr.Row():
query_type.render()
reranker_name.render()
filter_year.render()
top_k.render()
# Documentation
with gr.Accordion("Documentation", open=False):
gr.Markdown("""
- Retrieval model
- LanceDB: support for hybrid search search with reranking of results.
- Full text search (lexical): BM25
- Vector search (semantic dense vectors): BAAI/bge-m3
- Rerankers
- ColBERT, cross encoder, reciprocal rank fusion, AnswerDotAI
- Generation
- Mistral
- Examples
- Generated using Google NotebookLM
""")
# Click actions
response_button.click(
fn=generate_response,
inputs=[question, query_type, reranker_name, filter_year, top_k],
outputs=[response, references, snippets]
)
clear_button.click(
fn=lambda: ('', '', '', ''),
inputs=[],
outputs=[question, response, references, snippets]
)
demo.launch(show_api=False)
|