File size: 37,934 Bytes
1c1f53d
ad493ec
fb65e18
ad493ec
 
 
1c1f53d
ad493ec
 
 
 
 
 
1c1f53d
ad493ec
0213c67
 
 
 
 
 
 
a77742c
0213c67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a77742c
0213c67
 
 
a77742c
0213c67
a77742c
 
0213c67
 
 
 
 
 
ad493ec
 
 
1c1f53d
ad493ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb65e18
ad493ec
 
fb65e18
 
ad493ec
 
 
 
 
4d8c40c
929da88
 
6d576da
 
2bde17b
6d576da
 
 
 
 
 
2bde17b
fb65e18
 
9308632
fb65e18
731490a
6d576da
 
e029416
 
 
731490a
fb65e18
6d576da
fb65e18
 
6d576da
 
 
 
fb65e18
731490a
6d576da
fb65e18
6d576da
 
731490a
6d576da
fb65e18
 
731490a
6d576da
731490a
6d576da
 
e029416
 
 
731490a
fb65e18
929da88
ad493ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb65e18
ad493ec
 
 
fb65e18
ad493ec
 
 
1c1f53d
ad493ec
 
 
 
fb65e18
 
 
 
ad493ec
 
4d8c40c
fb65e18
 
 
 
 
 
 
 
 
 
 
ad493ec
 
fb65e18
 
 
ad493ec
 
 
fb65e18
ad493ec
fb65e18
 
 
ad493ec
 
 
1c1f53d
ad493ec
1c1f53d
ad493ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d8c40c
fd9e569
 
 
 
 
 
 
 
 
4d8c40c
1c1f53d
 
 
 
 
 
 
 
 
 
 
 
4d8c40c
 
 
fd9e569
4d8c40c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c1f53d
 
4d8c40c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd9e569
4d8c40c
 
 
 
fd9e569
 
 
 
4d8c40c
 
 
 
 
1c1f53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd9e569
1c1f53d
 
 
 
 
 
 
 
 
fd9e569
1c1f53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61d3afa
 
 
 
1c1f53d
 
 
 
 
 
 
 
 
 
51196f8
 
 
 
ad493ec
 
 
 
 
 
 
 
 
51196f8
ad493ec
d316893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c1f53d
51196f8
 
 
1c1f53d
601f4c3
51196f8
 
 
 
 
 
 
 
 
 
 
1c1f53d
51196f8
1c1f53d
 
 
d316893
1c1f53d
 
51196f8
 
 
 
 
 
 
 
601f4c3
51196f8
 
 
1c1f53d
51196f8
 
 
 
 
 
1c1f53d
 
ad493ec
 
 
 
 
 
 
 
 
 
 
1c1f53d
 
 
 
ad493ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0213c67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3da599
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
# -*- coding: utf-8 -*-
import typing
import types  # fusion of forward() of Wav2Vec2
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel
import audiofile
from tts import StyleTTS2
import audresample
import json
import re
import unicodedata
import textwrap
import nltk
from num2words import num2words
from num2word_greek.numbers2words import convert_numbers
from audionar import VitsModel, VitsTokenizer

nltk.download('punkt', download_dir='./')
nltk.download('punkt_tab', download_dir='./')
nltk.data.path.append('.')

device = 'cpu'


def fix_vocals(text, lang='ron'):

    # Longer phrases should come before shorter ones to prevent partial matches.

    ron_replacements = {
        'ţ': 'ț',
        'ț': 'ts',
        'î': 'u',
        'â': 'a',
        'ş': 's',
        'w': 'oui',
        'k': 'c',
        'l': 'll',
        # Math symbols
        'sqrt': ' rădăcina pătrată din ',
        '^': ' la puterea ',
        '+': ' plus ',
        ' - ': ' minus ',  # only replace if standalone so to not say minus if is a-b-c
        '*': ' ori ',  # times
        '/': ' împărțit la ',  # divided by
        '=': ' egal cu ',  # equals
        'pi': ' pi ',
        '<': ' mai mic decât ',
        '>': ' mai mare decât',
        '%': ' la sută ', # percent (from previous)
        '(': ' paranteză deschisă ',
        ')': ' paranteză închisă ',
        '[': ' paranteză pătrată deschisă ',
        ']': ' paranteză pătrată închisă ',
        '{': ' acoladă deschisă ',
        '}': ' acoladă închisă ',
        '≠': ' nu este egal cu ',
        '≤': ' mai mic sau egal cu ',
        '≥': ' mai mare sau egal cu ',
        '≈': ' aproximativ ',
        '∞': ' infinit ',
        '€': ' euro ',
        '$': ' dolar ',
        '£': ' liră ',
        '&': ' și ',  # and
        '@': ' la ',  # at
        '#': ' diez ',  # hash
        '∑': ' sumă ',
        '∫': ' integrală ',
        '√': ' rădăcina pătrată a ', # more generic square root
    }

    eng_replacements = {
        'wik': 'weaky',
        'sh': 'ss',
        'ch': 'ttss',
        'oo': 'oeo',
        # Math symbols for English
        'sqrt': ' square root of ',
        '^': ' to the power of ',
        '+': ' plus ',
        ' - ': ' minus ',
        '*': ' times ',
        ' / ': ' divided by ',
        '=': ' equals ',
        'pi': ' pi ',
        '<': ' less than ',
        '>': ' greater than ',
        # Additional common math symbols from previous list
        '%': ' percent ',
        '(': ' open parenthesis ',
        ')': ' close parenthesis ',
        '[': ' open bracket ',
        ']': ' close bracket ',
        '{': ' open curly brace ',
        '}': ' close curly brace ',
        '∑': ' sum ',
        '∫': ' integral ',
        '√': ' square root of ',
        '≠': ' not equals ',
        '≤': ' less than or equals ',
        '≥': ' greater than or equals ',
        '≈': ' approximately ',
        '∞': ' infinity ',
        '€': ' euro ',
        '$': ' dollar ',
        '£': ' pound ',
        '&': ' and ',
        '@': ' at ',
        '#': ' hash ',
    }

    serbian_replacements = {
        'rn': 'rrn',
        'ć': 'č',
        'c': 'č',
        'đ': 'd',
        'j': 'i',
        'l': 'lll',
        'w': 'v',
        #  https://huggingface.co/facebook/mms-tts-rmc-script_latin
        'sqrt': 'kvadratni koren iz',
        '^': ' na stepen ',
        '+': ' plus ',
        ' - ': ' minus ',
        '*': ' puta ',
        ' / ': ' podeljeno sa ',
        '=': ' jednako ',
        'pi': ' pi ',
        '<': ' manje od ',
        '>': ' veće od ',
        '%': ' procenat ',
        '(': ' otvorena zagrada ',
        ')': ' zatvorena zagrada ',
        '[': ' otvorena uglasta zagrada ',
        ']': ' zatvorena uglasta zagrada ',
        '{': ' otvorena vitičasta zagrada ',
        '}': ' zatvorena vitičasta zagrada ',
        '∑': ' suma ',
        '∫': ' integral ',
        '√': ' kvadratni koren ',
        '≠': ' nije jednako ',
        '≤': ' manje ili jednako od ',
        '≥': ' veće ili jednako od ',
        '≈': ' približno ',
        '∞': ' beskonačnost ',
        '€': ' evro ',
        '$': ' dolar ',
        '£': ' funta ',
        '&': ' i ',
        '@': ' et ',
        '#': ' taraba ',
        # Others
        #     'rn': 'rrn',
        # 'ć': 'č',
        # 'c': 'č',
        # 'đ': 'd',
        # 'l': 'le',
        # 'ij': 'i',
        # 'ji': 'i',
        # 'j': 'i',
        # 'služ': 'sloooozz',  # 'službeno'
        # 'suver': 'siuveeerra',  # 'suverena'
        # 'država': 'dirrezav',  # 'država'
        # 'iči': 'ici',  # 'Graniči'
        # 's ': 'se',  # a s with space
        # 'q': 'ku',
        # 'w': 'aou',
        # 'z': 's',
        # "š": "s",
        # 'th': 'ta',
        # 'v': 'vv',
        # "ć": "č",
        # "đ": "ď",
        # "lj": "ľ",
        # "nj": "ň",
        # "ž": "z",
        # "c": "č"
    }

    deu_replacements = {
        'sch': 'sh',
        'ch': 'kh',
        'ie': 'ee',
        'ei': 'ai',
        'ä': 'ae',
        'ö': 'oe',
        'ü': 'ue',
        'ß': 'ss',
        # Math symbols for German
        'sqrt': ' Quadratwurzel aus ',
        '^': ' hoch ',
        '+': ' plus ',
        ' - ': ' minus ',
        '*': ' mal ',
        ' / ': ' geteilt durch ',
        '=': ' gleich ',
        'pi': ' pi ',
        '<': ' kleiner als ',
        '>': ' größer als',
        # Additional common math symbols from previous list
        '%': ' prozent ',
        '(': ' Klammer auf ',
        ')': ' Klammer zu ',
        '[': ' eckige Klammer auf ',
        ']': ' eckige Klammer zu ',
        '{': ' geschweifte Klammer auf ',
        '}': ' geschweifte Klammer zu ',
        '∑': ' Summe ',
        '∫': ' Integral ',
        '√': ' Quadratwurzel ',
        '≠': ' ungleich ',
        '≤': ' kleiner oder gleich ',
        '≥': ' größer oder gleich ',
        '≈': ' ungefähr ',
        '∞': ' unendlich ',
        '€': ' euro ',
        '$': ' dollar ',
        '£': ' pfund ',
        '&': ' und ',
        '@': ' at ', # 'Klammeraffe' is also common but 'at' is simpler
        '#': ' raute ',
    }

    fra_replacements = {
        # French specific phonetic replacements (add as needed)
        # e.g., 'ç': 's', 'é': 'e', etc.
        'w': 'v',
        # Math symbols for French
        'sqrt': ' racine carrée de ',
        '^': ' à la puissance ',
        '+': ' plus ',
        ' - ': ' moins ',  # tiré ;
        '*': ' fois ',
        ' / ': ' divisé par ',
        '=': ' égale ',
        'pi': ' pi ',
        '<': ' inférieur à ',
        '>': ' supérieur à ',
        # Add more common math symbols as needed for French
        '%': ' pour cent ',
        '(': ' parenthèse ouverte ',
        ')': ' parenthèse fermée ',
        '[': ' crochet ouvert ',
        ']': ' crochet fermé ',
        '{': ' accolade ouverte ',
        '}': ' accolade fermée ',
        '∑': ' somme ',
        '∫': ' intégrale ',
        '√': ' racine carrée ',
        '≠': ' n\'égale pas ',
        '≤': ' inférieur ou égal à ',
        '≥': ' supérieur ou égal à ',
        '≈': ' approximativement ',
        '∞': ' infini ',
        '€': ' euro ',
        '$': ' dollar ',
        '£': ' livre ',
        '&': ' et ',
        '@': ' arobase ',
        '#': ' dièse ',
    }

    hun_replacements = {
        # Hungarian specific phonetic replacements (add as needed)
        # e.g., 'á': 'a', 'é': 'e', etc.
        'ch': 'ts',
        'cs': 'tz',
        'g': 'gk',
        'w': 'v',
        'z': 'zz',
        # Math symbols for Hungarian
        'sqrt': ' négyzetgyök ',
        '^': ' hatvány ',
        '+': ' plusz ',
        ' - ': ' mínusz ',
        '*': ' szorozva ',
        ' / ': ' osztva ',
        '=': ' egyenlő ',
        'pi': ' pi ',
        '<': ' kisebb mint ',
        '>': ' nagyobb mint ',
        # Add more common math symbols as needed for Hungarian
        '%': ' százalék ',
        '(': ' nyitó zárójel ',
        ')': ' záró zárójel ',
        '[': ' nyitó szögletes zárójel ',
        ']': ' záró szögletes zárójel ',
        '{': ' nyitó kapcsos zárójel ',
        '}': ' záró kapcsos zárójel ',
        '∑': ' szumma ',
        '∫': ' integrál ',
        '√': ' négyzetgyök ',
        '≠': ' nem egyenlő ',
        '≤': ' kisebb vagy egyenlő ',
        '≥': ' nagyobb vagy egyenlő ',
        '≈': ' körülbelül ',
        '∞': ' végtelen ',
        '€': ' euró ',
        '$': ' dollár ',
        '£': ' font ',
        '&': ' és ',
        '@': ' kukac ',
        '#': ' kettőskereszt ',
    }

    grc_replacements = {
        # Ancient Greek specific phonetic replacements (add as needed)
        # These are more about transliterating Greek letters if they are in the input text.
        # Math symbols for Ancient Greek (literal translations)
        'sqrt': ' τετραγωνικὴ ῥίζα ',
        '^': ' εἰς τὴν δύναμιν ',
        '+': ' σὺν ',
        ' - ': ' χωρὶς ',
        '*': ' πολλάκις ',
        ' / ': ' διαιρέω ',
        '=': ' ἴσον ',
        'pi': ' πῖ ',
        '<': ' ἔλαττον ',
        '>': ' μεῖζον ',
        # Add more common math symbols as needed for Ancient Greek
        '%': ' τοῖς ἑκατόν ', # tois hekaton - 'of the hundred'
        '(': ' ἀνοικτὴ παρένθεσις ',
        ')': ' κλειστὴ παρένθεσις ',
        '[': ' ἀνοικτὴ ἀγκύλη ',
        ']': ' κλειστὴ ἀγκύλη ',
        '{': ' ἀνοικτὴ σγουρὴ ἀγκύλη ',
        '}': ' κλειστὴ σγουρὴ ἀγκύλη ',
        '∑': ' ἄθροισμα ',
        '∫': ' ὁλοκλήρωμα ',
        '√': ' τετραγωνικὴ ῥίζα ',
        '≠': ' οὐκ ἴσον ',
        '≤': ' ἔλαττον ἢ ἴσον ',
        '≥': ' μεῖζον ἢ ἴσον ',
        '≈': ' περίπου ',
        '∞': ' ἄπειρον ',
        '€': ' εὐρώ ',
        '$': ' δολάριον ',
        '£': ' λίρα ',
        '&': ' καὶ ',
        '@': ' ἀτ ', # at
        '#': ' δίεση ', # hash
    }


    # Select the appropriate replacement dictionary based on the language
    replacements_map = {
        'grc': grc_replacements,
        'ron': ron_replacements,
        'eng': eng_replacements,
        'deu': deu_replacements,
        'fra': fra_replacements,
        'hun': hun_replacements,
        'rmc-script_latin': serbian_replacements,
    }

    current_replacements = replacements_map.get(lang)
    if current_replacements:
        # Sort replacements by length of the key in descending order.
        # This is crucial for correctly replacing multi-character strings (like 'sqrt', 'sch')
        # before their shorter substrings ('s', 'ch', 'q', 'r', 't').
        sorted_replacements = sorted(current_replacements.items(), key=lambda item: len(item[0]), reverse=True)
        for old, new in sorted_replacements:
            text = text.replace(old, new)
        return text
    else:
        # If the language is not supported, return the original text
        print(f"Warning: Language '{lang}' not supported for text replacement. Returning original text.")
        return text


def _num2words(text='01234', lang=None):
    if lang == 'grc':
        return convert_numbers(text)
    return num2words(text, lang=lang)  # HAS TO BE kwarg lang=lang


def transliterate_number(number_string,
                         lang=None):
    if lang == 'rmc-script_latin':
        lang = 'sr'
        exponential_pronoun = ' puta deset na stepen od '
        comma = ' tačka '
    elif lang == 'ron':
        lang = 'ro'
        exponential_pronoun = ' tízszer a erejéig '
        comma = ' virgulă '
    elif lang == 'hun':
        lang = 'hu'
        exponential_pronoun = ' tízszer a erejéig '
        comma = ' virgula '
    elif lang == 'deu':
        exponential_pronoun = ' mal zehn hoch '
        comma = ' komma '
    elif lang == 'fra':
        lang = 'fr'
        exponential_pronoun = ' puissance '
        comma = 'virgule'
    elif lang == 'grc':
        exponential_pronoun = ' εις την δυναμην του '
        comma = 'κομμα'
    else:
        lang = lang[:2]
        exponential_pronoun = ' times ten to the power of '
        comma = ' point '

    def replace_number(match):
        prefix = match.group(1) or ""
        number_part = match.group(2)
        suffix = match.group(5) or ""

        try:
            if 'e' in number_part.lower():
                base, exponent = number_part.lower().split('e')
                words = _num2words(base, lang=lang) + exponential_pronoun + _num2words(exponent, lang=lang)
            elif '.' in number_part:
                integer_part, decimal_part = number_part.split('.')
                words = _num2words(integer_part, lang=lang) + comma + " ".join(
                    [_num2words(digit, lang=lang) for digit in decimal_part])
            else:
                words = _num2words(number_part, lang=lang)
            return prefix + words + suffix
        except ValueError:
            return match.group(0)  # Return original if conversion fails

    pattern = r'([^\d]*)(\d+(\.\d+)?([Ee][+-]?\d+)?)([^\d]*)'
    return re.sub(pattern, replace_number, number_string)


language_names = ['Ancient greek',
                  'English',
                  'Deutsch',
                  'French',
                  'Hungarian',
                  'Romanian',
                  'Serbian (Approx.)']


def audionar_tts(text=None,
                 lang='romanian'):

    # https://huggingface.co/dkounadis/artificial-styletts2/blob/main/msinference.py

    lang = lang.lower()

    # https://huggingface.co/spaces/mms-meta/MMS

    if 'hun' in lang:

        lang_code = 'hun'

    elif any([i in lang for i in ['ser', 'bosn', 'herzegov', 'montenegr', 'macedon']]):

        # romani carpathian (has also Vlax) - cooler voice
        lang_code = 'rmc-script_latin'

    elif 'rom' in lang:

        lang_code = 'ron'

    elif 'ger' in lang or 'deu' in lang or 'allem' in lang:

        lang_code = 'deu'

    elif 'french' in lang:

        lang_code = 'fra'

    elif 'eng' in lang:

        lang_code = 'eng'

    elif 'ancient greek' in lang:

        lang_code = 'grc'

    else:

        lang_code = lang.split()[0].strip()   # latin & future option
        
    # LATIN / GRC / CYRILLIC    

    text = only_greek_or_only_latin(text, lang=lang_code)  # assure gr-chars if lang=='grc' / latin if lang!='grc'

    # NUMERALS (^ in math expression found & substituted here before arriving to fix_vocals)

    text = transliterate_number(text, lang=lang_code)

    # PRONOUNC.
    
    text = fix_vocals(text, lang=lang_code)

    # VITS

    global cached_lang_code, cached_net_g, cached_tokenizer

    if 'cached_lang_code' not in globals() or cached_lang_code != lang_code:
        cached_lang_code = lang_code
        cached_net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval().to(device)
        cached_tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')

    net_g = cached_net_g
    tokenizer = cached_tokenizer

    total_audio = []
    
    if not isinstance(text, list):
        text = textwrap.wrap(text, width=439)

    for _t in text:
        inputs = tokenizer(_t, return_tensors="pt")
        with torch.no_grad():
            x = net_g(input_ids=inputs.input_ids.to(device),
                      attention_mask=inputs.attention_mask.to(device),
                      lang_code=lang_code,
                      )[0, :]
            total_audio.append(x)

        print(f'\n\n_______________________________ {_t} {x.shape=}')

    x = torch.cat(total_audio).cpu().numpy()

    tmp_file = f'_speech.wav'

    audiofile.write(tmp_file, x, 16000)

    return tmp_file


# --


device = 0 if torch.cuda.is_available() else "cpu"
duration = 2  # limit processing of audio
age_gender_model_name = "audeering/wav2vec2-large-robust-6-ft-age-gender"
expression_model_name = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"


class AgeGenderHead(nn.Module):
    r"""Age-gender model head."""

    def __init__(self, config, num_labels):

        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.final_dropout)
        self.out_proj = nn.Linear(config.hidden_size, num_labels)

    def forward(self, features, **kwargs):

        x = features
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)

        return x


class AgeGenderModel(Wav2Vec2PreTrainedModel):
    r"""Age-gender recognition model."""

    def __init__(self, config):

        super().__init__(config)

        self.config = config
        self.wav2vec2 = Wav2Vec2Model(config)
        self.age = AgeGenderHead(config, 1)
        self.gender = AgeGenderHead(config, 3)
        self.init_weights()

    def forward(
            self,
            frozen_cnn7,
    ):

        hidden_states = self.wav2vec2(frozen_cnn7=frozen_cnn7)  # runs only Transformer layers

        hidden_states = torch.mean(hidden_states, dim=1)
        logits_age = self.age(hidden_states)
        logits_gender = torch.softmax(self.gender(hidden_states), dim=1)

        return hidden_states, logits_age, logits_gender

# AgeGenderModel.forward() is switched to accept computed frozen CNN7 features from ExpressioNmodel

def _forward(
    self,
    frozen_cnn7=None,  # CNN7 fetures of wav2vec2 calc. from CNN7 feature extractor (once)
    attention_mask=None):


    if attention_mask is not None:
        # compute reduced attention_mask corresponding to feature vectors
        attention_mask = self._get_feature_vector_attention_mask(
            frozen_cnn7.shape[1], attention_mask, add_adapter=False
        )

    hidden_states, _ = self.wav2vec2.feature_projection(frozen_cnn7)

    hidden_states = self.wav2vec2.encoder(
        hidden_states,
        attention_mask=attention_mask,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    )[0]

    return hidden_states


def _forward_and_cnn7(
    self,
    input_values,
    attention_mask=None):

    frozen_cnn7 = self.wav2vec2.feature_extractor(input_values)
    frozen_cnn7 = frozen_cnn7.transpose(1, 2)

    if attention_mask is not None:
        # compute reduced attention_mask corresponding to feature vectors
        attention_mask = self.wav2vec2._get_feature_vector_attention_mask(
            frozen_cnn7.shape[1], attention_mask, add_adapter=False
        )

    hidden_states, _ = self.wav2vec2.feature_projection(frozen_cnn7)  # grad=True non frozen

    hidden_states = self.wav2vec2.encoder(
        hidden_states,
        attention_mask=attention_mask,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    )[0]

    return hidden_states, frozen_cnn7 #feature_proj is trainable thus we have to access the frozen_cnn7 before projection layer


class ExpressionHead(nn.Module):
    r"""Expression model head."""

    def __init__(self, config):

        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.final_dropout)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):

        x = features
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)

        return x


class ExpressionModel(Wav2Vec2PreTrainedModel):
    r"""speech expression model."""

    def __init__(self, config):

        super().__init__(config)

        self.config = config
        self.wav2vec2 = Wav2Vec2Model(config)
        self.classifier = ExpressionHead(config)
        self.init_weights()

    def forward(self, input_values):
        hidden_states, frozen_cnn7 = self.wav2vec2(input_values)
        hidden_states = torch.mean(hidden_states, dim=1)
        logits = self.classifier(hidden_states)

        return hidden_states, logits, frozen_cnn7


# Load models from hub

age_gender_model = AgeGenderModel.from_pretrained(age_gender_model_name)
expression_processor = Wav2Vec2Processor.from_pretrained(expression_model_name)
expression_model = ExpressionModel.from_pretrained(expression_model_name)

# Emotion Calc. CNN features

age_gender_model.wav2vec2.forward = types.MethodType(_forward, age_gender_model)
expression_model.wav2vec2.forward = types.MethodType(_forward_and_cnn7, expression_model)

def process_func(x: np.ndarray, sampling_rate: int) -> typing.Tuple[str, dict, str]:

    # batch audio
    y = expression_processor(x, sampling_rate=sampling_rate)
    y = y['input_values'][0]
    y = y.reshape(1, -1)
    y = torch.from_numpy(y).to(device)

    # run through expression model
    with torch.no_grad():
        _, logits_expression, frozen_cnn7 = expression_model(y)

        _, logits_age, logits_gender = age_gender_model(frozen_cnn7=frozen_cnn7)

    # Plot A/D/V values
    plot_expression(logits_expression[0, 0].item(), # implicit detach().cpu().numpy()
                    logits_expression[0, 1].item(),
                    logits_expression[0, 2].item())
    expression_file = "expression.png"
    plt.savefig(expression_file)
    return (
        f"{round(100 * logits_age[0, 0].item())} years",  # age
        {
            "female": logits_gender[0, 0].item(),
            "male": logits_gender[0, 1].item(),
            "child": logits_gender[0, 2].item(),
        },
        expression_file,
    )
    

def recognize(input_file):
    if input_file is None:
        raise gr.Error(
            "No audio file submitted! "
            "Please upload or record an audio file "
            "before submitting your request."
        )

    signal, sampling_rate = audiofile.read(input_file, duration=duration)
    # Resample to sampling rate supported byu the models
    target_rate = 16000
    signal = audresample.resample(signal, sampling_rate, target_rate)

    return process_func(signal, target_rate)


def explode(data):
    """
    Expands a 3D array by creating gaps between voxels.
    This function is used to create the visual separation between the voxels.
    """
    shape_orig = np.array(data.shape)
    shape_new = shape_orig * 2 - 1
    retval = np.zeros(shape_new, dtype=data.dtype)
    retval[::2, ::2, ::2] = data
    return retval


def explode(data):
    """
    Expands a 3D array by adding new voxels between existing ones.
    This is used to create the gaps in the 3D plot.
    """
    shape = data.shape
    new_shape = (2 * shape[0] - 1, 2 * shape[1] - 1, 2 * shape[2] - 1)
    new_data = np.zeros(new_shape, dtype=data.dtype)
    new_data[::2, ::2, ::2] = data
    return new_data

def plot_expression(arousal, dominance, valence):
    '''_h = cuda tensor (N_PIX, N_PIX, N_PIX)'''

    N_PIX = 5
    _h = np.random.rand(N_PIX, N_PIX, N_PIX) * 1e-3
    adv = np.array([arousal, .994 - dominance, valence]).clip(0, .99)
    arousal, dominance, valence = (adv * N_PIX).astype(np.int64)  # find voxel
    _h[arousal, dominance, valence] = .22

    filled = np.ones((N_PIX, N_PIX, N_PIX), dtype=bool)

    # upscale the above voxel image, leaving gaps
    filled_2 = explode(filled)

    # Shrink the gaps
    x, y, z = np.indices(np.array(filled_2.shape) + 1).astype(float) // 2
    x[1::2, :, :] += 1
    y[:, 1::2, :] += 1
    z[:, :, 1::2] += 1

    fig = plt.figure()
    ax = fig.add_subplot(projection='3d')

    f_2 = np.ones([2 * N_PIX - 1,
                   2 * N_PIX - 1,
                   2 * N_PIX - 1, 4], dtype=np.float64)
    f_2[:, :, :, 3] = explode(_h)
    cm = plt.get_cmap('cool')
    f_2[:, :, :, :3] = cm(f_2[:, :, :, 3])[..., :3]

    f_2[:, :, :, 3] = f_2[:, :, :, 3].clip(.01, .74)

    ecolors_2 = f_2

    ax.voxels(x, y, z, filled_2, facecolors=f_2, edgecolors=.006 * ecolors_2)
    ax.set_aspect('equal')
    ax.set_zticks([0, N_PIX])
    ax.set_xticks([0, N_PIX])
    ax.set_yticks([0, N_PIX])

    ax.set_zticklabels([f'{n/N_PIX:.2f}'[0:] for n in ax.get_zticks()])
    ax.set_zlabel('valence', fontsize=10, labelpad=0)
    ax.set_xticklabels([f'{n/N_PIX:.2f}' for n in ax.get_xticks()])
    ax.set_xlabel('arousal', fontsize=10, labelpad=7)
    # The y-axis rotation is corrected here from 275 to 90 degrees
    ax.set_yticklabels([f'{1-n/N_PIX:.2f}' for n in ax.get_yticks()], rotation=90)
    ax.set_ylabel('dominance', fontsize=10, labelpad=10)
    ax.grid(False)

    ax.plot([N_PIX, N_PIX], [0, N_PIX + .2], [N_PIX, N_PIX], 'g', linewidth=1)
    ax.plot([0, N_PIX], [N_PIX, N_PIX + .24], [N_PIX, N_PIX], 'k', linewidth=1)
    
    # Missing lines on the top face
    ax.plot([0, 0], [0, N_PIX], [N_PIX, N_PIX], 'darkred', linewidth=1)
    ax.plot([0, N_PIX], [0, 0], [N_PIX, N_PIX], 'darkblue', linewidth=1)

    # Set pane colors after plotting the lines
    # UPDATED: Replaced `w_xaxis` with `xaxis` and `w_yaxis` with `yaxis`.
    ax.xaxis.set_pane_color((0.8, 0.8, 0.8, 0.5))
    ax.yaxis.set_pane_color((0.8, 0.8, 0.8, 0.5))
    ax.zaxis.set_pane_color((0.8, 0.8, 0.8, 0.0))

    # Restore the limits to prevent the plot from expanding
    ax.set_xlim(0, N_PIX)
    ax.set_ylim(0, N_PIX)
    ax.set_zlim(0, N_PIX)
    # plt.show()

# TTS
VOICES = [f'wav/{vox}' for vox in os.listdir('wav')]
_tts = StyleTTS2().to('cpu')

def only_greek_or_only_latin(text, lang='grc'):
    '''
        str: The converted string in the specified target script.
             Characters not found in any mapping are preserved as is.
             Latin accented characters in the input (e.g., 'É', 'ü') will
             be preserved in their lowercase form (e.g., 'é', 'ü') if
             converting to Latin.
    '''

    # --- Mapping Dictionaries ---
    # Keys are in lowercase as input text is case-folded.
    # If the output needs to maintain original casing, additional logic is required.

    latin_to_greek_map = {
        'a': 'α', 'b': 'β', 'g': 'γ', 'd': 'δ', 'e': 'ε',
        'ch': 'τσο', # Example of a multi-character Latin sequence
        'z': 'ζ', 'h': 'χ', 'i': 'ι', 'k': 'κ', 'l': 'λ',
        'm': 'μ', 'n': 'ν', 'x': 'ξ', 'o': 'ο', 'p': 'π',
        'v': 'β', 'sc': 'σκ', 'r': 'ρ', 's': 'σ', 't': 'τ',
        'u': 'ου', 'f': 'φ', 'c': 'σ', 'w': 'β', 'y': 'γ',
    }

    greek_to_latin_map = {
        'ου': 'ou', # Prioritize common diphthongs/digraphs
        'α': 'a', 'β': 'v', 'γ': 'g', 'δ': 'd', 'ε': 'e',
        'ζ': 'z', 'η': 'i', 'θ': 'th', 'ι': 'i', 'κ': 'k',
        'λ': 'l', 'μ': 'm', 'ν': 'n', 'ξ': 'x', 'ο': 'o',
        'π': 'p', 'ρ': 'r', 'σ': 's', 'τ': 't', 'υ': 'y', # 'y' is a common transliteration for upsilon
        'φ': 'f', 'χ': 'ch', 'ψ': 'ps', 'ω': 'o',
        'ς': 's', # Final sigma
    }

    cyrillic_to_latin_map = {
        'а': 'a', 'б': 'b', 'в': 'v', 'г': 'g', 'д': 'd', 'е': 'e', 'ё': 'yo', 'ж': 'zh',
        'з': 'z', 'и': 'i', 'й': 'y', 'к': 'k', 'л': 'l', 'м': 'm', 'н': 'n', 'о': 'o',
        'п': 'p', 'р': 'r', 'с': 's', 'т': 't', 'у': 'u', 'ф': 'f', 'х': 'kh', 'ц': 'ts',
        'ч': 'ch', 'ш': 'sh', 'щ': 'shch', 'ъ': '', 'ы': 'y', 'ь': '', 'э': 'e', 'ю': 'yu',
        'я': 'ya',
    }

    # Direct Cyrillic to Greek mapping based on phonetic similarity.
    # These are approximations and may not be universally accepted transliterations.
    cyrillic_to_greek_map = {
        'а': 'α', 'б': 'β', 'в': 'β', 'г': 'γ', 'д': 'δ', 'е': 'ε', 'ё': 'ιο', 'ж': 'ζ',
        'з': 'ζ', 'и': 'ι', 'й': 'ι', 'κ': 'κ', 'λ': 'λ', 'м': 'μ', 'н': 'ν', 'о': 'ο',
        'π': 'π', 'ρ': 'ρ', 'σ': 'σ', 'τ': 'τ', 'у': 'ου', 'ф': 'φ', 'х': 'χ', 'ц': 'τσ',
        'ч': 'τσ', # or τζ depending on desired sound
        'ш': 'σ', 'щ': 'σ', # approximations
        'ъ': '', 'ы': 'ι', 'ь': '', 'э': 'ε', 'ю': 'ιου',
        'я': 'ια',
    }

    # Convert the input text to lowercase, preserving accents for Latin characters.
    # casefold() is used for more robust caseless matching across Unicode characters.
    lowercased_text = text.lower()  #casefold()
    output_chars = []
    current_index = 0

    if lang == 'grc':
        # Combine all relevant maps for direct lookup to Greek
        conversion_map = {**latin_to_greek_map, **cyrillic_to_greek_map}

        # Sort keys by length in reverse order to handle multi-character sequences first
        sorted_source_keys = sorted(
            list(latin_to_greek_map.keys()) + list(cyrillic_to_greek_map.keys()),
            key=len,
            reverse=True
        )

        while current_index < len(lowercased_text):
            found_conversion = False
            for key in sorted_source_keys:
                if lowercased_text.startswith(key, current_index):
                    output_chars.append(conversion_map[key])
                    current_index += len(key)
                    found_conversion = True
                    break
            if not found_conversion:
                # If no specific mapping found, append the character as is.
                # This handles unmapped characters and already Greek characters.
                output_chars.append(lowercased_text[current_index])
                current_index += 1
        return ''.join(output_chars)

    else: # Default to 'lat' conversion
        # Combine Greek to Latin and Cyrillic to Latin maps.
        # Cyrillic map keys will take precedence in case of overlap if defined after Greek.
        combined_to_latin_map = {**greek_to_latin_map, **cyrillic_to_latin_map}

        # Sort all relevant source keys by length in reverse for replacement
        sorted_source_keys = sorted(
            list(greek_to_latin_map.keys()) + list(cyrillic_to_latin_map.keys()),
            key=len,
            reverse=True
        )

        while current_index < len(lowercased_text):
            found_conversion = False
            for key in sorted_source_keys:
                if lowercased_text.startswith(key, current_index):
                    latin_equivalent = combined_to_latin_map[key]

                    # Strip accents ONLY if the source character was from the Greek map.
                    # This preserves accents on original Latin characters (like 'é')
                    # and allows for intentional accent stripping from Greek transliterations.
                    if key in greek_to_latin_map:
                        normalized_latin = unicodedata.normalize('NFD', latin_equivalent)
                        stripped_latin = ''.join(c for c in normalized_latin if not unicodedata.combining(c))
                        output_chars.append(stripped_latin)
                    else:
                        output_chars.append(latin_equivalent)

                    current_index += len(key)
                    found_conversion = True
                    break

            if not found_conversion:
                # If no conversion happened from Greek or Cyrillic, append the character as is.
                # This preserves existing Latin characters (including accented ones from input),
                # numbers, punctuation, and other symbols.
                output_chars.append(lowercased_text[current_index])
                current_index += 1

        return ''.join(output_chars)


def other_tts(text='Hallov worlds Far over the',
              ref_s='wav/af_ZA_google-nwu_0184.wav'):

    text = only_greek_or_only_latin(text, lang='eng')

    x = _tts.inference(text, ref_s=ref_s)[0:1, 0, :]

    x = torch.cat([.99 * x,
                   .94 * x], 0).cpu().numpy()  # Stereo

    # x /= np.abs(x).max() + 1e-7  ~ Volume normalisation @api.py:tts_multi_sentence() OR demo.py

    tmp_file = f'_speech.wav'  # N x clients (cleanup vs tmp file / client)

    audiofile.write(tmp_file, x, 24000)

    return tmp_file


def update_selected_voice(voice_filename):
    return 'wav/' + voice_filename + '.wav'


description = (
    "Estimate **age**, **gender**, and **expression** "
    "of the speaker contained in an audio file or microphone recording.  \n"
    f"The model [{age_gender_model_name}]"
    f"(https://huggingface.co/{age_gender_model_name}) "
    "recognises age and gender, "
    f"whereas [{expression_model_name}]"
    f"(https://huggingface.co/{expression_model_name}) "
    "recognises the expression dimensions arousal, dominance, and valence. "
)

css_buttons = """
            .cool-button {
            background-color: #1a2a40; /* Slightly lighter dark blue */
            color: white;
            padding: 15px 32px;
            text-align: center;
            font-size: 16px;
            border-radius: 12px;
            box-shadow: 0 4px 8px rgba(0, 0, 0, 0.4);
            transition: all 0.3s ease-in-out;
            border: none;
            cursor: pointer;
        }
        .cool-button:hover {
            background-color: #1a2a40; /* Slightly lighter dark blue */
            transform: scale(1.05);
            box-shadow: 0 4px 8px rgba(0, 0, 0, 0.4);
        }
        .cool-row {
            margin-bottom: 10px;
        }
        """

with gr.Blocks(theme='huggingface', css=css_buttons) as demo:
    with gr.Tab(label="other TTS"):

        selected_voice = gr.State(value='wav/en_US_m-ailabs_mary_ann.wav')

        with gr.Row():
            voice_info = gr.Markdown(f'Vox = `{selected_voice.value}`')

        # Main input and output components
        with gr.Row():
            text_input = gr.Textbox(
                label="Enter text for TTS:",
                placeholder="Type your message here...",
                lines=4,
                value="Farover the misty mountains cold too dungeons deep and caverns old.",
            )
            generate_button = gr.Button("Generate Audio", variant="primary")

        output_audio = gr.Audio(label="TTS Output")

        with gr.Column():
            voice_buttons = []
            for i in range(0, len(VOICES), 7):
                with gr.Row(elem_classes=["cool-row"]):
                    for voice_filename in VOICES[i:i+7]:
                        voice_filename = voice_filename[4:-4]  # drop wav/ for visibility
                        button = gr.Button(voice_filename,  elem_classes=["cool-button"])

                        button.click(
                            fn=update_selected_voice,
                            inputs=[gr.Textbox(value=voice_filename, visible=False)],
                            outputs=[selected_voice]
                        )
                        button.click(
                            fn=lambda v=voice_filename: f'Vox = `{v}`',
                            inputs=None,
                            outputs=voice_info
                        )
                        voice_buttons.append(button)

        generate_button.click(
            fn=other_tts,
            inputs=[text_input, selected_voice],
            outputs=output_audio
        )

    with gr.Tab(label="Speech Analysis"):
        with gr.Row():
            with gr.Column():
                gr.Markdown(description)
                input = gr.Audio(
                    sources=["upload", "microphone"],
                    type="filepath",
                    label="Audio input",
                    min_length=0.025,  # seconds
                )
                gr.Examples(
                    [
                        "wav/female-46-neutral.wav",
                        "wav/female-20-happy.wav",
                        "wav/male-60-angry.wav",
                        "wav/male-27-sad.wav",
                    ],
                    [input],
                    label="Examples from CREMA-D, ODbL v1.0 license",
                )
                gr.Markdown("Only the first two seconds of the audio will be processed.")
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_age = gr.Textbox(label="Age")
                output_gender = gr.Label(label="Gender")
                output_expression = gr.Image(label="Expression")

        outputs = [output_age, output_gender, output_expression]
        submit_btn.click(recognize, input, outputs)


    with gr.Tab("audionar TTS"):
            with gr.Row():
                text_input = gr.Textbox(
                    lines=4,
                    value='Η γρηγορη καφετι αλεπου πειδαει πανω απο τον τεμπελη σκυλο.',
                    label="Type text for TTS"
                )
                lang_dropdown = gr.Dropdown(
                    choices=language_names,
                    label="TTS language",
                    value="Ancient greek",
                )
            
            # Create a button to trigger the TTS function
            tts_button = gr.Button("Generate Audio")

            # Create the output audio component
            audio_output = gr.Audio(label="Generated Audio")

            # Link the button click event to the mms_tts function
            tts_button.click(
                fn=audionar_tts,
                inputs=[text_input, lang_dropdown],
                outputs=audio_output
            )

demo.launch(debug=True)