Spaces:
Running
Running
File size: 37,934 Bytes
1c1f53d ad493ec fb65e18 ad493ec 1c1f53d ad493ec 1c1f53d ad493ec 0213c67 a77742c 0213c67 a77742c 0213c67 a77742c 0213c67 a77742c 0213c67 ad493ec 1c1f53d ad493ec fb65e18 ad493ec fb65e18 ad493ec 4d8c40c 929da88 6d576da 2bde17b 6d576da 2bde17b fb65e18 9308632 fb65e18 731490a 6d576da e029416 731490a fb65e18 6d576da fb65e18 6d576da fb65e18 731490a 6d576da fb65e18 6d576da 731490a 6d576da fb65e18 731490a 6d576da 731490a 6d576da e029416 731490a fb65e18 929da88 ad493ec fb65e18 ad493ec fb65e18 ad493ec 1c1f53d ad493ec fb65e18 ad493ec 4d8c40c fb65e18 ad493ec fb65e18 ad493ec fb65e18 ad493ec fb65e18 ad493ec 1c1f53d ad493ec 1c1f53d ad493ec 4d8c40c fd9e569 4d8c40c 1c1f53d 4d8c40c fd9e569 4d8c40c 1c1f53d 4d8c40c fd9e569 4d8c40c fd9e569 4d8c40c 1c1f53d fd9e569 1c1f53d fd9e569 1c1f53d 61d3afa 1c1f53d 51196f8 ad493ec 51196f8 ad493ec d316893 1c1f53d 51196f8 1c1f53d 601f4c3 51196f8 1c1f53d 51196f8 1c1f53d d316893 1c1f53d 51196f8 601f4c3 51196f8 1c1f53d 51196f8 1c1f53d ad493ec 1c1f53d ad493ec 0213c67 f3da599 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 |
# -*- coding: utf-8 -*-
import typing
import types # fusion of forward() of Wav2Vec2
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel
import audiofile
from tts import StyleTTS2
import audresample
import json
import re
import unicodedata
import textwrap
import nltk
from num2words import num2words
from num2word_greek.numbers2words import convert_numbers
from audionar import VitsModel, VitsTokenizer
nltk.download('punkt', download_dir='./')
nltk.download('punkt_tab', download_dir='./')
nltk.data.path.append('.')
device = 'cpu'
def fix_vocals(text, lang='ron'):
# Longer phrases should come before shorter ones to prevent partial matches.
ron_replacements = {
'ţ': 'ț',
'ț': 'ts',
'î': 'u',
'â': 'a',
'ş': 's',
'w': 'oui',
'k': 'c',
'l': 'll',
# Math symbols
'sqrt': ' rădăcina pătrată din ',
'^': ' la puterea ',
'+': ' plus ',
' - ': ' minus ', # only replace if standalone so to not say minus if is a-b-c
'*': ' ori ', # times
'/': ' împărțit la ', # divided by
'=': ' egal cu ', # equals
'pi': ' pi ',
'<': ' mai mic decât ',
'>': ' mai mare decât',
'%': ' la sută ', # percent (from previous)
'(': ' paranteză deschisă ',
')': ' paranteză închisă ',
'[': ' paranteză pătrată deschisă ',
']': ' paranteză pătrată închisă ',
'{': ' acoladă deschisă ',
'}': ' acoladă închisă ',
'≠': ' nu este egal cu ',
'≤': ' mai mic sau egal cu ',
'≥': ' mai mare sau egal cu ',
'≈': ' aproximativ ',
'∞': ' infinit ',
'€': ' euro ',
'$': ' dolar ',
'£': ' liră ',
'&': ' și ', # and
'@': ' la ', # at
'#': ' diez ', # hash
'∑': ' sumă ',
'∫': ' integrală ',
'√': ' rădăcina pătrată a ', # more generic square root
}
eng_replacements = {
'wik': 'weaky',
'sh': 'ss',
'ch': 'ttss',
'oo': 'oeo',
# Math symbols for English
'sqrt': ' square root of ',
'^': ' to the power of ',
'+': ' plus ',
' - ': ' minus ',
'*': ' times ',
' / ': ' divided by ',
'=': ' equals ',
'pi': ' pi ',
'<': ' less than ',
'>': ' greater than ',
# Additional common math symbols from previous list
'%': ' percent ',
'(': ' open parenthesis ',
')': ' close parenthesis ',
'[': ' open bracket ',
']': ' close bracket ',
'{': ' open curly brace ',
'}': ' close curly brace ',
'∑': ' sum ',
'∫': ' integral ',
'√': ' square root of ',
'≠': ' not equals ',
'≤': ' less than or equals ',
'≥': ' greater than or equals ',
'≈': ' approximately ',
'∞': ' infinity ',
'€': ' euro ',
'$': ' dollar ',
'£': ' pound ',
'&': ' and ',
'@': ' at ',
'#': ' hash ',
}
serbian_replacements = {
'rn': 'rrn',
'ć': 'č',
'c': 'č',
'đ': 'd',
'j': 'i',
'l': 'lll',
'w': 'v',
# https://huggingface.co/facebook/mms-tts-rmc-script_latin
'sqrt': 'kvadratni koren iz',
'^': ' na stepen ',
'+': ' plus ',
' - ': ' minus ',
'*': ' puta ',
' / ': ' podeljeno sa ',
'=': ' jednako ',
'pi': ' pi ',
'<': ' manje od ',
'>': ' veće od ',
'%': ' procenat ',
'(': ' otvorena zagrada ',
')': ' zatvorena zagrada ',
'[': ' otvorena uglasta zagrada ',
']': ' zatvorena uglasta zagrada ',
'{': ' otvorena vitičasta zagrada ',
'}': ' zatvorena vitičasta zagrada ',
'∑': ' suma ',
'∫': ' integral ',
'√': ' kvadratni koren ',
'≠': ' nije jednako ',
'≤': ' manje ili jednako od ',
'≥': ' veće ili jednako od ',
'≈': ' približno ',
'∞': ' beskonačnost ',
'€': ' evro ',
'$': ' dolar ',
'£': ' funta ',
'&': ' i ',
'@': ' et ',
'#': ' taraba ',
# Others
# 'rn': 'rrn',
# 'ć': 'č',
# 'c': 'č',
# 'đ': 'd',
# 'l': 'le',
# 'ij': 'i',
# 'ji': 'i',
# 'j': 'i',
# 'služ': 'sloooozz', # 'službeno'
# 'suver': 'siuveeerra', # 'suverena'
# 'država': 'dirrezav', # 'država'
# 'iči': 'ici', # 'Graniči'
# 's ': 'se', # a s with space
# 'q': 'ku',
# 'w': 'aou',
# 'z': 's',
# "š": "s",
# 'th': 'ta',
# 'v': 'vv',
# "ć": "č",
# "đ": "ď",
# "lj": "ľ",
# "nj": "ň",
# "ž": "z",
# "c": "č"
}
deu_replacements = {
'sch': 'sh',
'ch': 'kh',
'ie': 'ee',
'ei': 'ai',
'ä': 'ae',
'ö': 'oe',
'ü': 'ue',
'ß': 'ss',
# Math symbols for German
'sqrt': ' Quadratwurzel aus ',
'^': ' hoch ',
'+': ' plus ',
' - ': ' minus ',
'*': ' mal ',
' / ': ' geteilt durch ',
'=': ' gleich ',
'pi': ' pi ',
'<': ' kleiner als ',
'>': ' größer als',
# Additional common math symbols from previous list
'%': ' prozent ',
'(': ' Klammer auf ',
')': ' Klammer zu ',
'[': ' eckige Klammer auf ',
']': ' eckige Klammer zu ',
'{': ' geschweifte Klammer auf ',
'}': ' geschweifte Klammer zu ',
'∑': ' Summe ',
'∫': ' Integral ',
'√': ' Quadratwurzel ',
'≠': ' ungleich ',
'≤': ' kleiner oder gleich ',
'≥': ' größer oder gleich ',
'≈': ' ungefähr ',
'∞': ' unendlich ',
'€': ' euro ',
'$': ' dollar ',
'£': ' pfund ',
'&': ' und ',
'@': ' at ', # 'Klammeraffe' is also common but 'at' is simpler
'#': ' raute ',
}
fra_replacements = {
# French specific phonetic replacements (add as needed)
# e.g., 'ç': 's', 'é': 'e', etc.
'w': 'v',
# Math symbols for French
'sqrt': ' racine carrée de ',
'^': ' à la puissance ',
'+': ' plus ',
' - ': ' moins ', # tiré ;
'*': ' fois ',
' / ': ' divisé par ',
'=': ' égale ',
'pi': ' pi ',
'<': ' inférieur à ',
'>': ' supérieur à ',
# Add more common math symbols as needed for French
'%': ' pour cent ',
'(': ' parenthèse ouverte ',
')': ' parenthèse fermée ',
'[': ' crochet ouvert ',
']': ' crochet fermé ',
'{': ' accolade ouverte ',
'}': ' accolade fermée ',
'∑': ' somme ',
'∫': ' intégrale ',
'√': ' racine carrée ',
'≠': ' n\'égale pas ',
'≤': ' inférieur ou égal à ',
'≥': ' supérieur ou égal à ',
'≈': ' approximativement ',
'∞': ' infini ',
'€': ' euro ',
'$': ' dollar ',
'£': ' livre ',
'&': ' et ',
'@': ' arobase ',
'#': ' dièse ',
}
hun_replacements = {
# Hungarian specific phonetic replacements (add as needed)
# e.g., 'á': 'a', 'é': 'e', etc.
'ch': 'ts',
'cs': 'tz',
'g': 'gk',
'w': 'v',
'z': 'zz',
# Math symbols for Hungarian
'sqrt': ' négyzetgyök ',
'^': ' hatvány ',
'+': ' plusz ',
' - ': ' mínusz ',
'*': ' szorozva ',
' / ': ' osztva ',
'=': ' egyenlő ',
'pi': ' pi ',
'<': ' kisebb mint ',
'>': ' nagyobb mint ',
# Add more common math symbols as needed for Hungarian
'%': ' százalék ',
'(': ' nyitó zárójel ',
')': ' záró zárójel ',
'[': ' nyitó szögletes zárójel ',
']': ' záró szögletes zárójel ',
'{': ' nyitó kapcsos zárójel ',
'}': ' záró kapcsos zárójel ',
'∑': ' szumma ',
'∫': ' integrál ',
'√': ' négyzetgyök ',
'≠': ' nem egyenlő ',
'≤': ' kisebb vagy egyenlő ',
'≥': ' nagyobb vagy egyenlő ',
'≈': ' körülbelül ',
'∞': ' végtelen ',
'€': ' euró ',
'$': ' dollár ',
'£': ' font ',
'&': ' és ',
'@': ' kukac ',
'#': ' kettőskereszt ',
}
grc_replacements = {
# Ancient Greek specific phonetic replacements (add as needed)
# These are more about transliterating Greek letters if they are in the input text.
# Math symbols for Ancient Greek (literal translations)
'sqrt': ' τετραγωνικὴ ῥίζα ',
'^': ' εἰς τὴν δύναμιν ',
'+': ' σὺν ',
' - ': ' χωρὶς ',
'*': ' πολλάκις ',
' / ': ' διαιρέω ',
'=': ' ἴσον ',
'pi': ' πῖ ',
'<': ' ἔλαττον ',
'>': ' μεῖζον ',
# Add more common math symbols as needed for Ancient Greek
'%': ' τοῖς ἑκατόν ', # tois hekaton - 'of the hundred'
'(': ' ἀνοικτὴ παρένθεσις ',
')': ' κλειστὴ παρένθεσις ',
'[': ' ἀνοικτὴ ἀγκύλη ',
']': ' κλειστὴ ἀγκύλη ',
'{': ' ἀνοικτὴ σγουρὴ ἀγκύλη ',
'}': ' κλειστὴ σγουρὴ ἀγκύλη ',
'∑': ' ἄθροισμα ',
'∫': ' ὁλοκλήρωμα ',
'√': ' τετραγωνικὴ ῥίζα ',
'≠': ' οὐκ ἴσον ',
'≤': ' ἔλαττον ἢ ἴσον ',
'≥': ' μεῖζον ἢ ἴσον ',
'≈': ' περίπου ',
'∞': ' ἄπειρον ',
'€': ' εὐρώ ',
'$': ' δολάριον ',
'£': ' λίρα ',
'&': ' καὶ ',
'@': ' ἀτ ', # at
'#': ' δίεση ', # hash
}
# Select the appropriate replacement dictionary based on the language
replacements_map = {
'grc': grc_replacements,
'ron': ron_replacements,
'eng': eng_replacements,
'deu': deu_replacements,
'fra': fra_replacements,
'hun': hun_replacements,
'rmc-script_latin': serbian_replacements,
}
current_replacements = replacements_map.get(lang)
if current_replacements:
# Sort replacements by length of the key in descending order.
# This is crucial for correctly replacing multi-character strings (like 'sqrt', 'sch')
# before their shorter substrings ('s', 'ch', 'q', 'r', 't').
sorted_replacements = sorted(current_replacements.items(), key=lambda item: len(item[0]), reverse=True)
for old, new in sorted_replacements:
text = text.replace(old, new)
return text
else:
# If the language is not supported, return the original text
print(f"Warning: Language '{lang}' not supported for text replacement. Returning original text.")
return text
def _num2words(text='01234', lang=None):
if lang == 'grc':
return convert_numbers(text)
return num2words(text, lang=lang) # HAS TO BE kwarg lang=lang
def transliterate_number(number_string,
lang=None):
if lang == 'rmc-script_latin':
lang = 'sr'
exponential_pronoun = ' puta deset na stepen od '
comma = ' tačka '
elif lang == 'ron':
lang = 'ro'
exponential_pronoun = ' tízszer a erejéig '
comma = ' virgulă '
elif lang == 'hun':
lang = 'hu'
exponential_pronoun = ' tízszer a erejéig '
comma = ' virgula '
elif lang == 'deu':
exponential_pronoun = ' mal zehn hoch '
comma = ' komma '
elif lang == 'fra':
lang = 'fr'
exponential_pronoun = ' puissance '
comma = 'virgule'
elif lang == 'grc':
exponential_pronoun = ' εις την δυναμην του '
comma = 'κομμα'
else:
lang = lang[:2]
exponential_pronoun = ' times ten to the power of '
comma = ' point '
def replace_number(match):
prefix = match.group(1) or ""
number_part = match.group(2)
suffix = match.group(5) or ""
try:
if 'e' in number_part.lower():
base, exponent = number_part.lower().split('e')
words = _num2words(base, lang=lang) + exponential_pronoun + _num2words(exponent, lang=lang)
elif '.' in number_part:
integer_part, decimal_part = number_part.split('.')
words = _num2words(integer_part, lang=lang) + comma + " ".join(
[_num2words(digit, lang=lang) for digit in decimal_part])
else:
words = _num2words(number_part, lang=lang)
return prefix + words + suffix
except ValueError:
return match.group(0) # Return original if conversion fails
pattern = r'([^\d]*)(\d+(\.\d+)?([Ee][+-]?\d+)?)([^\d]*)'
return re.sub(pattern, replace_number, number_string)
language_names = ['Ancient greek',
'English',
'Deutsch',
'French',
'Hungarian',
'Romanian',
'Serbian (Approx.)']
def audionar_tts(text=None,
lang='romanian'):
# https://huggingface.co/dkounadis/artificial-styletts2/blob/main/msinference.py
lang = lang.lower()
# https://huggingface.co/spaces/mms-meta/MMS
if 'hun' in lang:
lang_code = 'hun'
elif any([i in lang for i in ['ser', 'bosn', 'herzegov', 'montenegr', 'macedon']]):
# romani carpathian (has also Vlax) - cooler voice
lang_code = 'rmc-script_latin'
elif 'rom' in lang:
lang_code = 'ron'
elif 'ger' in lang or 'deu' in lang or 'allem' in lang:
lang_code = 'deu'
elif 'french' in lang:
lang_code = 'fra'
elif 'eng' in lang:
lang_code = 'eng'
elif 'ancient greek' in lang:
lang_code = 'grc'
else:
lang_code = lang.split()[0].strip() # latin & future option
# LATIN / GRC / CYRILLIC
text = only_greek_or_only_latin(text, lang=lang_code) # assure gr-chars if lang=='grc' / latin if lang!='grc'
# NUMERALS (^ in math expression found & substituted here before arriving to fix_vocals)
text = transliterate_number(text, lang=lang_code)
# PRONOUNC.
text = fix_vocals(text, lang=lang_code)
# VITS
global cached_lang_code, cached_net_g, cached_tokenizer
if 'cached_lang_code' not in globals() or cached_lang_code != lang_code:
cached_lang_code = lang_code
cached_net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval().to(device)
cached_tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
net_g = cached_net_g
tokenizer = cached_tokenizer
total_audio = []
if not isinstance(text, list):
text = textwrap.wrap(text, width=439)
for _t in text:
inputs = tokenizer(_t, return_tensors="pt")
with torch.no_grad():
x = net_g(input_ids=inputs.input_ids.to(device),
attention_mask=inputs.attention_mask.to(device),
lang_code=lang_code,
)[0, :]
total_audio.append(x)
print(f'\n\n_______________________________ {_t} {x.shape=}')
x = torch.cat(total_audio).cpu().numpy()
tmp_file = f'_speech.wav'
audiofile.write(tmp_file, x, 16000)
return tmp_file
# --
device = 0 if torch.cuda.is_available() else "cpu"
duration = 2 # limit processing of audio
age_gender_model_name = "audeering/wav2vec2-large-robust-6-ft-age-gender"
expression_model_name = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"
class AgeGenderHead(nn.Module):
r"""Age-gender model head."""
def __init__(self, config, num_labels):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class AgeGenderModel(Wav2Vec2PreTrainedModel):
r"""Age-gender recognition model."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.age = AgeGenderHead(config, 1)
self.gender = AgeGenderHead(config, 3)
self.init_weights()
def forward(
self,
frozen_cnn7,
):
hidden_states = self.wav2vec2(frozen_cnn7=frozen_cnn7) # runs only Transformer layers
hidden_states = torch.mean(hidden_states, dim=1)
logits_age = self.age(hidden_states)
logits_gender = torch.softmax(self.gender(hidden_states), dim=1)
return hidden_states, logits_age, logits_gender
# AgeGenderModel.forward() is switched to accept computed frozen CNN7 features from ExpressioNmodel
def _forward(
self,
frozen_cnn7=None, # CNN7 fetures of wav2vec2 calc. from CNN7 feature extractor (once)
attention_mask=None):
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
frozen_cnn7.shape[1], attention_mask, add_adapter=False
)
hidden_states, _ = self.wav2vec2.feature_projection(frozen_cnn7)
hidden_states = self.wav2vec2.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
)[0]
return hidden_states
def _forward_and_cnn7(
self,
input_values,
attention_mask=None):
frozen_cnn7 = self.wav2vec2.feature_extractor(input_values)
frozen_cnn7 = frozen_cnn7.transpose(1, 2)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self.wav2vec2._get_feature_vector_attention_mask(
frozen_cnn7.shape[1], attention_mask, add_adapter=False
)
hidden_states, _ = self.wav2vec2.feature_projection(frozen_cnn7) # grad=True non frozen
hidden_states = self.wav2vec2.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
)[0]
return hidden_states, frozen_cnn7 #feature_proj is trainable thus we have to access the frozen_cnn7 before projection layer
class ExpressionHead(nn.Module):
r"""Expression model head."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class ExpressionModel(Wav2Vec2PreTrainedModel):
r"""speech expression model."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.classifier = ExpressionHead(config)
self.init_weights()
def forward(self, input_values):
hidden_states, frozen_cnn7 = self.wav2vec2(input_values)
hidden_states = torch.mean(hidden_states, dim=1)
logits = self.classifier(hidden_states)
return hidden_states, logits, frozen_cnn7
# Load models from hub
age_gender_model = AgeGenderModel.from_pretrained(age_gender_model_name)
expression_processor = Wav2Vec2Processor.from_pretrained(expression_model_name)
expression_model = ExpressionModel.from_pretrained(expression_model_name)
# Emotion Calc. CNN features
age_gender_model.wav2vec2.forward = types.MethodType(_forward, age_gender_model)
expression_model.wav2vec2.forward = types.MethodType(_forward_and_cnn7, expression_model)
def process_func(x: np.ndarray, sampling_rate: int) -> typing.Tuple[str, dict, str]:
# batch audio
y = expression_processor(x, sampling_rate=sampling_rate)
y = y['input_values'][0]
y = y.reshape(1, -1)
y = torch.from_numpy(y).to(device)
# run through expression model
with torch.no_grad():
_, logits_expression, frozen_cnn7 = expression_model(y)
_, logits_age, logits_gender = age_gender_model(frozen_cnn7=frozen_cnn7)
# Plot A/D/V values
plot_expression(logits_expression[0, 0].item(), # implicit detach().cpu().numpy()
logits_expression[0, 1].item(),
logits_expression[0, 2].item())
expression_file = "expression.png"
plt.savefig(expression_file)
return (
f"{round(100 * logits_age[0, 0].item())} years", # age
{
"female": logits_gender[0, 0].item(),
"male": logits_gender[0, 1].item(),
"child": logits_gender[0, 2].item(),
},
expression_file,
)
def recognize(input_file):
if input_file is None:
raise gr.Error(
"No audio file submitted! "
"Please upload or record an audio file "
"before submitting your request."
)
signal, sampling_rate = audiofile.read(input_file, duration=duration)
# Resample to sampling rate supported byu the models
target_rate = 16000
signal = audresample.resample(signal, sampling_rate, target_rate)
return process_func(signal, target_rate)
def explode(data):
"""
Expands a 3D array by creating gaps between voxels.
This function is used to create the visual separation between the voxels.
"""
shape_orig = np.array(data.shape)
shape_new = shape_orig * 2 - 1
retval = np.zeros(shape_new, dtype=data.dtype)
retval[::2, ::2, ::2] = data
return retval
def explode(data):
"""
Expands a 3D array by adding new voxels between existing ones.
This is used to create the gaps in the 3D plot.
"""
shape = data.shape
new_shape = (2 * shape[0] - 1, 2 * shape[1] - 1, 2 * shape[2] - 1)
new_data = np.zeros(new_shape, dtype=data.dtype)
new_data[::2, ::2, ::2] = data
return new_data
def plot_expression(arousal, dominance, valence):
'''_h = cuda tensor (N_PIX, N_PIX, N_PIX)'''
N_PIX = 5
_h = np.random.rand(N_PIX, N_PIX, N_PIX) * 1e-3
adv = np.array([arousal, .994 - dominance, valence]).clip(0, .99)
arousal, dominance, valence = (adv * N_PIX).astype(np.int64) # find voxel
_h[arousal, dominance, valence] = .22
filled = np.ones((N_PIX, N_PIX, N_PIX), dtype=bool)
# upscale the above voxel image, leaving gaps
filled_2 = explode(filled)
# Shrink the gaps
x, y, z = np.indices(np.array(filled_2.shape) + 1).astype(float) // 2
x[1::2, :, :] += 1
y[:, 1::2, :] += 1
z[:, :, 1::2] += 1
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
f_2 = np.ones([2 * N_PIX - 1,
2 * N_PIX - 1,
2 * N_PIX - 1, 4], dtype=np.float64)
f_2[:, :, :, 3] = explode(_h)
cm = plt.get_cmap('cool')
f_2[:, :, :, :3] = cm(f_2[:, :, :, 3])[..., :3]
f_2[:, :, :, 3] = f_2[:, :, :, 3].clip(.01, .74)
ecolors_2 = f_2
ax.voxels(x, y, z, filled_2, facecolors=f_2, edgecolors=.006 * ecolors_2)
ax.set_aspect('equal')
ax.set_zticks([0, N_PIX])
ax.set_xticks([0, N_PIX])
ax.set_yticks([0, N_PIX])
ax.set_zticklabels([f'{n/N_PIX:.2f}'[0:] for n in ax.get_zticks()])
ax.set_zlabel('valence', fontsize=10, labelpad=0)
ax.set_xticklabels([f'{n/N_PIX:.2f}' for n in ax.get_xticks()])
ax.set_xlabel('arousal', fontsize=10, labelpad=7)
# The y-axis rotation is corrected here from 275 to 90 degrees
ax.set_yticklabels([f'{1-n/N_PIX:.2f}' for n in ax.get_yticks()], rotation=90)
ax.set_ylabel('dominance', fontsize=10, labelpad=10)
ax.grid(False)
ax.plot([N_PIX, N_PIX], [0, N_PIX + .2], [N_PIX, N_PIX], 'g', linewidth=1)
ax.plot([0, N_PIX], [N_PIX, N_PIX + .24], [N_PIX, N_PIX], 'k', linewidth=1)
# Missing lines on the top face
ax.plot([0, 0], [0, N_PIX], [N_PIX, N_PIX], 'darkred', linewidth=1)
ax.plot([0, N_PIX], [0, 0], [N_PIX, N_PIX], 'darkblue', linewidth=1)
# Set pane colors after plotting the lines
# UPDATED: Replaced `w_xaxis` with `xaxis` and `w_yaxis` with `yaxis`.
ax.xaxis.set_pane_color((0.8, 0.8, 0.8, 0.5))
ax.yaxis.set_pane_color((0.8, 0.8, 0.8, 0.5))
ax.zaxis.set_pane_color((0.8, 0.8, 0.8, 0.0))
# Restore the limits to prevent the plot from expanding
ax.set_xlim(0, N_PIX)
ax.set_ylim(0, N_PIX)
ax.set_zlim(0, N_PIX)
# plt.show()
# TTS
VOICES = [f'wav/{vox}' for vox in os.listdir('wav')]
_tts = StyleTTS2().to('cpu')
def only_greek_or_only_latin(text, lang='grc'):
'''
str: The converted string in the specified target script.
Characters not found in any mapping are preserved as is.
Latin accented characters in the input (e.g., 'É', 'ü') will
be preserved in their lowercase form (e.g., 'é', 'ü') if
converting to Latin.
'''
# --- Mapping Dictionaries ---
# Keys are in lowercase as input text is case-folded.
# If the output needs to maintain original casing, additional logic is required.
latin_to_greek_map = {
'a': 'α', 'b': 'β', 'g': 'γ', 'd': 'δ', 'e': 'ε',
'ch': 'τσο', # Example of a multi-character Latin sequence
'z': 'ζ', 'h': 'χ', 'i': 'ι', 'k': 'κ', 'l': 'λ',
'm': 'μ', 'n': 'ν', 'x': 'ξ', 'o': 'ο', 'p': 'π',
'v': 'β', 'sc': 'σκ', 'r': 'ρ', 's': 'σ', 't': 'τ',
'u': 'ου', 'f': 'φ', 'c': 'σ', 'w': 'β', 'y': 'γ',
}
greek_to_latin_map = {
'ου': 'ou', # Prioritize common diphthongs/digraphs
'α': 'a', 'β': 'v', 'γ': 'g', 'δ': 'd', 'ε': 'e',
'ζ': 'z', 'η': 'i', 'θ': 'th', 'ι': 'i', 'κ': 'k',
'λ': 'l', 'μ': 'm', 'ν': 'n', 'ξ': 'x', 'ο': 'o',
'π': 'p', 'ρ': 'r', 'σ': 's', 'τ': 't', 'υ': 'y', # 'y' is a common transliteration for upsilon
'φ': 'f', 'χ': 'ch', 'ψ': 'ps', 'ω': 'o',
'ς': 's', # Final sigma
}
cyrillic_to_latin_map = {
'а': 'a', 'б': 'b', 'в': 'v', 'г': 'g', 'д': 'd', 'е': 'e', 'ё': 'yo', 'ж': 'zh',
'з': 'z', 'и': 'i', 'й': 'y', 'к': 'k', 'л': 'l', 'м': 'm', 'н': 'n', 'о': 'o',
'п': 'p', 'р': 'r', 'с': 's', 'т': 't', 'у': 'u', 'ф': 'f', 'х': 'kh', 'ц': 'ts',
'ч': 'ch', 'ш': 'sh', 'щ': 'shch', 'ъ': '', 'ы': 'y', 'ь': '', 'э': 'e', 'ю': 'yu',
'я': 'ya',
}
# Direct Cyrillic to Greek mapping based on phonetic similarity.
# These are approximations and may not be universally accepted transliterations.
cyrillic_to_greek_map = {
'а': 'α', 'б': 'β', 'в': 'β', 'г': 'γ', 'д': 'δ', 'е': 'ε', 'ё': 'ιο', 'ж': 'ζ',
'з': 'ζ', 'и': 'ι', 'й': 'ι', 'κ': 'κ', 'λ': 'λ', 'м': 'μ', 'н': 'ν', 'о': 'ο',
'π': 'π', 'ρ': 'ρ', 'σ': 'σ', 'τ': 'τ', 'у': 'ου', 'ф': 'φ', 'х': 'χ', 'ц': 'τσ',
'ч': 'τσ', # or τζ depending on desired sound
'ш': 'σ', 'щ': 'σ', # approximations
'ъ': '', 'ы': 'ι', 'ь': '', 'э': 'ε', 'ю': 'ιου',
'я': 'ια',
}
# Convert the input text to lowercase, preserving accents for Latin characters.
# casefold() is used for more robust caseless matching across Unicode characters.
lowercased_text = text.lower() #casefold()
output_chars = []
current_index = 0
if lang == 'grc':
# Combine all relevant maps for direct lookup to Greek
conversion_map = {**latin_to_greek_map, **cyrillic_to_greek_map}
# Sort keys by length in reverse order to handle multi-character sequences first
sorted_source_keys = sorted(
list(latin_to_greek_map.keys()) + list(cyrillic_to_greek_map.keys()),
key=len,
reverse=True
)
while current_index < len(lowercased_text):
found_conversion = False
for key in sorted_source_keys:
if lowercased_text.startswith(key, current_index):
output_chars.append(conversion_map[key])
current_index += len(key)
found_conversion = True
break
if not found_conversion:
# If no specific mapping found, append the character as is.
# This handles unmapped characters and already Greek characters.
output_chars.append(lowercased_text[current_index])
current_index += 1
return ''.join(output_chars)
else: # Default to 'lat' conversion
# Combine Greek to Latin and Cyrillic to Latin maps.
# Cyrillic map keys will take precedence in case of overlap if defined after Greek.
combined_to_latin_map = {**greek_to_latin_map, **cyrillic_to_latin_map}
# Sort all relevant source keys by length in reverse for replacement
sorted_source_keys = sorted(
list(greek_to_latin_map.keys()) + list(cyrillic_to_latin_map.keys()),
key=len,
reverse=True
)
while current_index < len(lowercased_text):
found_conversion = False
for key in sorted_source_keys:
if lowercased_text.startswith(key, current_index):
latin_equivalent = combined_to_latin_map[key]
# Strip accents ONLY if the source character was from the Greek map.
# This preserves accents on original Latin characters (like 'é')
# and allows for intentional accent stripping from Greek transliterations.
if key in greek_to_latin_map:
normalized_latin = unicodedata.normalize('NFD', latin_equivalent)
stripped_latin = ''.join(c for c in normalized_latin if not unicodedata.combining(c))
output_chars.append(stripped_latin)
else:
output_chars.append(latin_equivalent)
current_index += len(key)
found_conversion = True
break
if not found_conversion:
# If no conversion happened from Greek or Cyrillic, append the character as is.
# This preserves existing Latin characters (including accented ones from input),
# numbers, punctuation, and other symbols.
output_chars.append(lowercased_text[current_index])
current_index += 1
return ''.join(output_chars)
def other_tts(text='Hallov worlds Far over the',
ref_s='wav/af_ZA_google-nwu_0184.wav'):
text = only_greek_or_only_latin(text, lang='eng')
x = _tts.inference(text, ref_s=ref_s)[0:1, 0, :]
x = torch.cat([.99 * x,
.94 * x], 0).cpu().numpy() # Stereo
# x /= np.abs(x).max() + 1e-7 ~ Volume normalisation @api.py:tts_multi_sentence() OR demo.py
tmp_file = f'_speech.wav' # N x clients (cleanup vs tmp file / client)
audiofile.write(tmp_file, x, 24000)
return tmp_file
def update_selected_voice(voice_filename):
return 'wav/' + voice_filename + '.wav'
description = (
"Estimate **age**, **gender**, and **expression** "
"of the speaker contained in an audio file or microphone recording. \n"
f"The model [{age_gender_model_name}]"
f"(https://huggingface.co/{age_gender_model_name}) "
"recognises age and gender, "
f"whereas [{expression_model_name}]"
f"(https://huggingface.co/{expression_model_name}) "
"recognises the expression dimensions arousal, dominance, and valence. "
)
css_buttons = """
.cool-button {
background-color: #1a2a40; /* Slightly lighter dark blue */
color: white;
padding: 15px 32px;
text-align: center;
font-size: 16px;
border-radius: 12px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.4);
transition: all 0.3s ease-in-out;
border: none;
cursor: pointer;
}
.cool-button:hover {
background-color: #1a2a40; /* Slightly lighter dark blue */
transform: scale(1.05);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.4);
}
.cool-row {
margin-bottom: 10px;
}
"""
with gr.Blocks(theme='huggingface', css=css_buttons) as demo:
with gr.Tab(label="other TTS"):
selected_voice = gr.State(value='wav/en_US_m-ailabs_mary_ann.wav')
with gr.Row():
voice_info = gr.Markdown(f'Vox = `{selected_voice.value}`')
# Main input and output components
with gr.Row():
text_input = gr.Textbox(
label="Enter text for TTS:",
placeholder="Type your message here...",
lines=4,
value="Farover the misty mountains cold too dungeons deep and caverns old.",
)
generate_button = gr.Button("Generate Audio", variant="primary")
output_audio = gr.Audio(label="TTS Output")
with gr.Column():
voice_buttons = []
for i in range(0, len(VOICES), 7):
with gr.Row(elem_classes=["cool-row"]):
for voice_filename in VOICES[i:i+7]:
voice_filename = voice_filename[4:-4] # drop wav/ for visibility
button = gr.Button(voice_filename, elem_classes=["cool-button"])
button.click(
fn=update_selected_voice,
inputs=[gr.Textbox(value=voice_filename, visible=False)],
outputs=[selected_voice]
)
button.click(
fn=lambda v=voice_filename: f'Vox = `{v}`',
inputs=None,
outputs=voice_info
)
voice_buttons.append(button)
generate_button.click(
fn=other_tts,
inputs=[text_input, selected_voice],
outputs=output_audio
)
with gr.Tab(label="Speech Analysis"):
with gr.Row():
with gr.Column():
gr.Markdown(description)
input = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Audio input",
min_length=0.025, # seconds
)
gr.Examples(
[
"wav/female-46-neutral.wav",
"wav/female-20-happy.wav",
"wav/male-60-angry.wav",
"wav/male-27-sad.wav",
],
[input],
label="Examples from CREMA-D, ODbL v1.0 license",
)
gr.Markdown("Only the first two seconds of the audio will be processed.")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_age = gr.Textbox(label="Age")
output_gender = gr.Label(label="Gender")
output_expression = gr.Image(label="Expression")
outputs = [output_age, output_gender, output_expression]
submit_btn.click(recognize, input, outputs)
with gr.Tab("audionar TTS"):
with gr.Row():
text_input = gr.Textbox(
lines=4,
value='Η γρηγορη καφετι αλεπου πειδαει πανω απο τον τεμπελη σκυλο.',
label="Type text for TTS"
)
lang_dropdown = gr.Dropdown(
choices=language_names,
label="TTS language",
value="Ancient greek",
)
# Create a button to trigger the TTS function
tts_button = gr.Button("Generate Audio")
# Create the output audio component
audio_output = gr.Audio(label="Generated Audio")
# Link the button click event to the mms_tts function
tts_button.click(
fn=audionar_tts,
inputs=[text_input, lang_dropdown],
outputs=audio_output
)
demo.launch(debug=True)
|