Spaces:
Running
Running
import torch | |
import nltk | |
nltk.download('punkt', download_dir='./') # COMMENT IF DOWNLOADED | |
nltk.download('punkt_tab', download_dir='./') # COMMENT IF DOWNLOADED | |
nltk.data.path.append('.') | |
import librosa | |
import audiofile | |
import torch.nn.functional as F | |
import math | |
import numpy as np | |
import torch.nn as nn | |
import string | |
import textwrap | |
import phonemizer | |
from espeak_util import set_espeak_library | |
from transformers import AlbertConfig, AlbertModel | |
from huggingface_hub import hf_hub_download | |
from nltk.tokenize import word_tokenize | |
from torch.nn import Conv1d, ConvTranspose1d | |
from torch.nn.utils.parametrizations import weight_norm | |
from torch.nn.utils import spectral_norm | |
_pad = "$" | |
_punctuation = ';:,.!?¡¿—…"«»“” ' | |
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' | |
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ" | |
MAX_PHONEMES = 424 # For OOM is the max length of single (non-split) sentence for StyleTTS2 inference | |
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) | |
dicts = {} | |
for i in range(len((symbols))): | |
dicts[symbols[i]] = i | |
class TextCleaner: | |
def __init__(self, dummy=None): | |
self.word_index_dictionary = dicts | |
print(len(dicts)) | |
def __call__(self, text): | |
indexes = [] | |
for char in text: | |
try: | |
indexes.append(self.word_index_dictionary[char]) | |
except KeyError: | |
# `=NONVOCAL == \x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~\x7f | |
# print(f'NonVOCAL {char}', end='\r') | |
pass | |
return indexes | |
set_espeak_library() | |
textclenaer = TextCleaner() | |
global_phonemizer = phonemizer.backend.EspeakBackend(language="en-us", preserve_punctuation=True, with_stress=True) | |
def _del_prefix(d): | |
# del ".module" | |
out = {} | |
for k, v in d.items(): | |
out[k[7:]] = v | |
return out | |
class StyleTTS2(nn.Module): | |
def __init__(self): | |
super().__init__() | |
albert_base_configuration = AlbertConfig(vocab_size=178, | |
hidden_size=768, | |
num_attention_heads=12, | |
intermediate_size=2048, | |
max_position_embeddings=512, | |
num_hidden_layers=12, | |
dropout=0.1) | |
self.bert = AlbertModel(albert_base_configuration) | |
state_dict = torch.load(hf_hub_download(repo_id='dkounadis/artificial-styletts2', | |
filename='Utils/PLBERT/step_1000000.pth'), | |
map_location='cpu')['net'] | |
new_state_dict = {} | |
for k, v in state_dict.items(): | |
name = k[7:] # remove `module.` | |
if name.startswith('encoder.'): | |
name = name[8:] # remove `encoder.` | |
new_state_dict[name] = v | |
del new_state_dict["embeddings.position_ids"] | |
self.bert.load_state_dict(new_state_dict, strict=True) | |
self.decoder = Decoder(dim_in=512, | |
style_dim=128, | |
dim_out=80, # n_mels | |
resblock_kernel_sizes=[3, 7, 11], | |
upsample_rates=[10, 5, 3, 2], | |
upsample_initial_channel=512, | |
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
upsample_kernel_sizes=[20, 10, 6, 4]) | |
self.text_encoder = TextEncoder(channels=512, | |
kernel_size=5, | |
depth=3, # args['model_params']['n_layer'], | |
n_symbols=178, # args['model_params']['n_token'] | |
) | |
self.predictor = ProsodyPredictor(style_dim=128, | |
d_hid=512, | |
nlayers=3, # OFFICIAL config.nlayers=5; | |
max_dur=50) | |
self.style_encoder = StyleEncoder() | |
self.predictor_encoder = StyleEncoder() | |
self.bert_encoder = torch.nn.Linear(self.bert.config.hidden_size, 512) | |
self.mel_spec = MelSpec() | |
params = torch.load(hf_hub_download(repo_id='yl4579/StyleTTS2-LibriTTS', | |
filename='Models/LibriTTS/epochs_2nd_00020.pth'), | |
map_location='cpu')['net'] | |
self.bert.load_state_dict(_del_prefix(params['bert']), strict=True) | |
self.bert_encoder.load_state_dict(_del_prefix(params['bert_encoder']), strict=True) | |
self.predictor.load_state_dict(_del_prefix(params['predictor']), strict=True) | |
self.decoder.load_state_dict(_del_prefix(params['decoder']), strict=True) | |
self.text_encoder.load_state_dict(_del_prefix(params['text_encoder']), strict=True) | |
self.predictor_encoder.load_state_dict(_del_prefix(params['predictor_encoder']), strict=True) | |
self.style_encoder.load_state_dict(_del_prefix(params['style_encoder']), strict=True) | |
# FOR LSTM | |
for n, p in self.named_parameters(): | |
p.requires_grad = False | |
self.eval() | |
def device(self): | |
return self.style_encoder.unshared.weight.device | |
def compute_style(self, wav_file=None): | |
x, sr = librosa.load(wav_file, sr=24000) | |
x, _ = librosa.effects.trim(x, top_db=30) | |
if sr != 24000: | |
x = librosa.resample(x, sr, 24000) | |
# LOGMEL - Has 16KHz default basisc - Called on 24KHz .wav | |
x = torch.from_numpy(x[None, :]).to(device=self.device(), | |
dtype=torch.float) | |
mel_tensor = (torch.log(1e-5 + self.mel_spec(x)) + 4) / 4 | |
#mel_tensor = preprocess(audio).to(device) | |
ref_s = self.style_encoder(mel_tensor) | |
ref_p = self.predictor_encoder(mel_tensor) # [bs, 11, 1, 128] | |
s = torch.cat([ref_s, ref_p], dim=3) # [bs, 11, 1, 256] | |
s = s[:, :, 0, :].transpose(1, 2) # [1, 128, 11] | |
return s # [1, 128, 11] | |
def inference(self, | |
text, | |
ref_s=None): | |
'''text may become too long when phonemized''' | |
if isinstance(ref_s, str): | |
ref_s = self.compute_style(ref_s) | |
else: | |
pass # assume ref_s = precomputed style vector | |
# text = transliterate_number(text, lang='en').strip() | |
# as we are in english transliteration is already done by the text cleaner? | |
# somehow we have phonemes in text that try to be rephonemized | |
# The ds txt should be only ascii | |
if isinstance(text, str): | |
_translator = str.maketrans('', '', string.punctuation) | |
text = [sub_sent.translate(_translator) + '.' for sub_sent in textwrap.wrap(text, 74)] | |
# # text = nltk.sent_tokenize(text) | |
# # text = [i for sent in sentences for i in textwrap.wrap(sent, width=120)] | |
# # text = textwrap.wrap(text, width=MAX_PHONEMES) # phonemes thus sent_tokenize() can't split them in sentences | |
device = ref_s.device | |
total = [] | |
for _t in text: | |
_t = global_phonemizer.phonemize([_t]) | |
_t = word_tokenize(_t[0]) | |
_t = ' '.join(_t) | |
tokens = textclenaer(_t)[:MAX_PHONEMES] + [4] # textclenaer('.;?!') = [4,1,6,5] # append . punctuation to assure proper sound termination (pulse Issue) | |
# After filter we should assure is terminating as a sentence | |
# print(len(_t), len(tokens), 'Msi')#, textclenaer('.;?!')) | |
# ================================= Delete Phonemes If len(phonemes) > len(text) === OOM during training | |
tokens.insert(0, 0) | |
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) | |
with torch.no_grad(): | |
hidden_states = self.text_encoder(tokens) | |
bert_dur = self.bert(tokens, attention_mask=torch.ones_like(tokens) | |
).last_hidden_state | |
d_en = self.bert_encoder(bert_dur).transpose(-1, -2) | |
aln_trg, F0_pred, N_pred = self.predictor(d_en=d_en, s=ref_s[:, 128:, :]) | |
asr = torch.bmm(aln_trg, hidden_states) | |
asr = asr.transpose(1, 2) | |
asr_new = torch.zeros_like(asr) | |
asr_new[:, :, 0] = asr[:, :, 0] | |
asr_new[:, :, 1:] = asr[:, :, 0:-1] | |
asr = asr_new | |
x = self.decoder(asr=asr, | |
F0_curve=F0_pred, | |
N=N_pred, | |
s=ref_s[:, :128, :]) # different part of ref_s | |
# print(x.shape, 'TTS TTS TTS TTS') | |
if x.shape[2] < 100: | |
x = torch.zeros(1, 1, 1000, device=self.device()) # silence if this sentence was empty | |
# NORMALIS / Crop Scratch at end (The endingscratch sound is not solved even with nltk.sentence split & punctuation) | |
x = x[..., 40:-4000] | |
# x /= x.abs().max() + 1e-7 # preserve as torch | |
# return x | |
if x.shape[2] == 0: | |
# nohing to vocode | |
x = torch.zeros(1, 1, 1000, device=self.device()) | |
total.append(x) | |
# -- | |
total = 1.94 * torch.cat(total, 2) # 1.94 * Perhaps exceeding -1,1 affects MIMI encode | |
total /= 1.02 * total.abs().max() + 1e-7 | |
# -- | |
return total | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size*dilation - dilation)/2) | |
def _tile(x, | |
length=None): | |
x = x.repeat(1, 1, int(length / x.shape[2]) + 1)[:, :, :length] | |
return x | |
class AdaIN1d(nn.Module): | |
# used by HiFiGan & ProsodyPredictor | |
def __init__(self, style_dim, num_features): | |
super().__init__() | |
self.norm = nn.InstanceNorm1d(num_features, affine=False) | |
self.fc = nn.Linear(style_dim, num_features*2) | |
def forward(self, x, s): | |
# x = torch.Size([1, 512, 248]) same as output | |
# s = torch.Size([1, 7, 1, 128]) | |
s = self.fc(s.transpose(1, 2)).transpose(1, 2) | |
s = _tile(s, length=x.shape[2]) | |
gamma, beta = torch.chunk(s, chunks=2, dim=1) | |
return (1+gamma) * self.norm(x) + beta | |
class AdaINResBlock1(torch.nn.Module): | |
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64): | |
super(AdaINResBlock1, self).__init__() | |
self.convs1 = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], | |
padding=get_padding(kernel_size, dilation[2]))) | |
]) | |
# self.convs1.apply(init_weights) | |
self.convs2 = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))) | |
]) | |
# self.convs2.apply(init_weights) | |
self.adain1 = nn.ModuleList([ | |
AdaIN1d(style_dim, channels), | |
AdaIN1d(style_dim, channels), | |
AdaIN1d(style_dim, channels), | |
]) | |
self.adain2 = nn.ModuleList([ | |
AdaIN1d(style_dim, channels), | |
AdaIN1d(style_dim, channels), | |
AdaIN1d(style_dim, channels), | |
]) | |
self.alpha1 = nn.ParameterList( | |
[nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))]) | |
self.alpha2 = nn.ParameterList( | |
[nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))]) | |
def forward(self, x, s): | |
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2): | |
xt = n1(x, s) # THIS IS ADAIN - EXPECTS conv1d dims | |
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D | |
xt = c1(xt) | |
xt = n2(xt, s) # THIS IS ADAIN - EXPECTS conv1d dims | |
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D | |
xt = c2(xt) | |
x = xt + x | |
return x | |
class SourceModuleHnNSF(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.harmonic_num = 8 | |
self.l_linear = torch.nn.Linear(self.harmonic_num + 1, 1) | |
self.upsample_scale = 300 | |
def forward(self, x): | |
# -- | |
x = torch.multiply(x, torch.FloatTensor( | |
[[range(1, self.harmonic_num + 2)]]).to(x.device)) # [1, 145200, 9] | |
# modulo of negative f0_values => -21 % 10 = 9 as -3*10 + 9 = 21 NOTICE THAT f0_values IS SIGNED | |
rad_values = x / 25647 #).clamp(0, 1) | |
# rad_values = torch.where(torch.logical_or(rad_values < 0, rad_values > 1), 0.5, rad_values) | |
rad_values = rad_values % 1 # % of neg values | |
rad_values = F.interpolate(rad_values.transpose(1, 2), | |
scale_factor=1/self.upsample_scale, | |
mode='linear').transpose(1, 2) | |
# 1.89 sounds also nice has woofer at punctuation | |
phase = torch.cumsum(rad_values, dim=1) * 1.84 * np.pi | |
phase = F.interpolate(phase.transpose(1, 2) * self.upsample_scale, | |
scale_factor=self.upsample_scale, mode='linear').transpose(1, 2) | |
x = .009 * phase.sin() | |
# -- | |
x = self.l_linear(x).tanh() | |
return x | |
class Generator(torch.nn.Module): | |
def __init__(self, | |
style_dim, | |
resblock_kernel_sizes, | |
upsample_rates, | |
upsample_initial_channel, | |
resblock_dilation_sizes, | |
upsample_kernel_sizes): | |
super(Generator, self).__init__() | |
self.num_kernels = len(resblock_kernel_sizes) | |
self.num_upsamples = len(upsample_rates) | |
self.m_source = SourceModuleHnNSF() | |
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates)) | |
self.noise_convs = nn.ModuleList() | |
self.ups = nn.ModuleList() | |
self.noise_res = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
c_cur = upsample_initial_channel // (2 ** (i + 1)) | |
self.ups.append(weight_norm(ConvTranspose1d(upsample_initial_channel//(2**i), | |
upsample_initial_channel//( | |
2**(i+1)), | |
k, u, padding=(u//2 + u % 2), output_padding=u % 2))) | |
if i + 1 < len(upsample_rates): | |
stride_f0 = np.prod(upsample_rates[i + 1:]) | |
self.noise_convs.append(Conv1d( | |
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2)) | |
self.noise_res.append(AdaINResBlock1( | |
c_cur, 7, [1, 3, 5], style_dim)) | |
else: | |
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) | |
self.noise_res.append(AdaINResBlock1( | |
c_cur, 11, [1, 3, 5], style_dim)) | |
self.resblocks = nn.ModuleList() | |
self.alphas = nn.ParameterList() | |
self.alphas.append(nn.Parameter( | |
torch.ones(1, upsample_initial_channel, 1))) | |
for i in range(len(self.ups)): | |
ch = upsample_initial_channel//(2**(i+1)) | |
self.alphas.append(nn.Parameter(torch.ones(1, ch, 1))) | |
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): | |
self.resblocks.append(AdaINResBlock1(ch, k, d, style_dim)) | |
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) | |
def forward(self, x, s, f0): | |
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 484]) GENERAT 249 | |
f0 = self.f0_upsamp(f0).transpose(1, 2) | |
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 145200, 1]) GENERAT 253 | |
# [1, 145400, 1] f0 enters already upsampled to full wav 24kHz length | |
har_source = self.m_source(f0) | |
har_source = har_source.transpose(1, 2) | |
for i in range(self.num_upsamples): | |
x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2) | |
x_source = self.noise_convs[i](har_source) | |
x_source = self.noise_res[i](x_source, s) | |
x = self.ups[i](x) | |
x = x + x_source | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i*self.num_kernels+j](x, s) | |
else: | |
xs += self.resblocks[i*self.num_kernels+j](x, s) | |
x = xs / self.num_kernels | |
# x = x + (1 / self.alphas[i+1]) * (torch.sin(self.alphas[i+1] * x) ** 2) # noisy | |
x = self.conv_post(x) | |
x = torch.tanh(x) | |
return x | |
class AdainResBlk1d(nn.Module): | |
# also used in ProsodyPredictor() | |
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2), | |
upsample='none', dropout_p=0.0): | |
super().__init__() | |
self.actv = actv | |
self.upsample_type = upsample | |
self.upsample = UpSample1d(upsample) | |
self.learned_sc = dim_in != dim_out | |
self._build_weights(dim_in, dim_out, style_dim) | |
if upsample == 'none': | |
self.pool = nn.Identity() | |
else: | |
self.pool = weight_norm(nn.ConvTranspose1d( | |
dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1)) | |
def _build_weights(self, dim_in, dim_out, style_dim): | |
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) | |
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1)) | |
self.norm1 = AdaIN1d(style_dim, dim_in) | |
self.norm2 = AdaIN1d(style_dim, dim_out) | |
if self.learned_sc: | |
self.conv1x1 = weight_norm( | |
nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
def _shortcut(self, x): | |
x = self.upsample(x) | |
if self.learned_sc: | |
x = self.conv1x1(x) | |
return x | |
def _residual(self, x, s): | |
x = self.norm1(x, s) | |
x = self.actv(x) | |
x = self.pool(x) | |
x = self.conv1(x) | |
x = self.norm2(x, s) | |
x = self.actv(x) | |
x = self.conv2(x) | |
return x | |
def forward(self, x, s): | |
out = self._residual(x, s) | |
out = (out + self._shortcut(x)) / math.sqrt(2) | |
return out | |
class UpSample1d(nn.Module): | |
def __init__(self, layer_type): | |
super().__init__() | |
self.layer_type = layer_type | |
def forward(self, x): | |
if self.layer_type == 'none': | |
return x | |
else: | |
return F.interpolate(x, scale_factor=2, mode='nearest-exact') | |
class Decoder(nn.Module): | |
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80, | |
resblock_kernel_sizes=[3, 7, 11], | |
upsample_rates=[10, 5, 3, 2], | |
upsample_initial_channel=512, | |
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
upsample_kernel_sizes=[20, 10, 6, 4]): | |
super().__init__() | |
self.decode = nn.ModuleList() | |
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim) | |
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim)) | |
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim)) | |
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim)) | |
self.decode.append(AdainResBlk1d( | |
1024 + 2 + 64, 512, style_dim, upsample=True)) | |
self.F0_conv = weight_norm( | |
nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1)) # smooth | |
self.N_conv = weight_norm( | |
nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1)) | |
self.asr_res = nn.Sequential( | |
weight_norm(nn.Conv1d(512, 64, kernel_size=1)), | |
) | |
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates, | |
upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes) | |
def forward(self, asr=None, F0_curve=None, N=None, s=None): | |
F0 = self.F0_conv(F0_curve) | |
N = self.N_conv(N) | |
x = torch.cat([asr, F0, N], axis=1) | |
x = self.encode(x, s) | |
asr_res = self.asr_res(asr) | |
res = True | |
for block in self.decode: | |
if res: | |
x = torch.cat([x, asr_res, F0, N], axis=1) | |
x = block(x, s) | |
if block.upsample_type != "none": | |
res = False | |
x = self.generator(x, s, F0_curve) | |
return x | |
class MelSpec(torch.nn.Module): | |
def __init__(self, | |
sample_rate=17402, # https://github.com/fakerybakery/styletts2-cli/blob/main/msinference.py = Default 16000. However 17400 vocalises better also "en_US/vctk_p274" | |
n_fft=2048, | |
win_length=1200, | |
hop_length=300, | |
n_mels=80 | |
): | |
'''avoids dependency on torchaudio''' | |
super().__init__() | |
self.n_fft = n_fft | |
self.win_length = win_length if win_length is not None else n_fft | |
self.hop_length = hop_length if hop_length is not None else self.win_length // 2 | |
# -- | |
f_min = 0.0 | |
f_max = float(sample_rate // 2) | |
all_freqs = torch.linspace(0, sample_rate // 2, n_fft//2+1) | |
m_min = 2595.0 * math.log10(1.0 + (f_min / 700.0)) | |
m_max = 2595.0 * math.log10(1.0 + (f_max / 700.0)) | |
m_pts = torch.linspace(m_min, m_max, n_mels + 2) | |
f_pts = 700.0 * (10 ** (m_pts / 2595.0) - 1.0) | |
f_diff = f_pts[1:] - f_pts[:-1] # (n_mels + 1) | |
slopes = f_pts.unsqueeze(0) - all_freqs.unsqueeze(1) | |
zero = torch.zeros(1) | |
down_slopes = (-1.0 * slopes[:, :-2]) / f_diff[:-1] # (n_freqs, n_mels) | |
up_slopes = slopes[:, 2:] / f_diff[1:] # (n_freqs, n_mels) | |
fb = torch.max(zero, torch.min(down_slopes, up_slopes)) | |
# -- | |
self.register_buffer('fb', fb, persistent=False) | |
window = torch.hann_window(self.win_length) | |
self.register_buffer('window', window, persistent=False) | |
def forward(self, x): | |
spec_f = torch.stft(x, | |
self.n_fft, | |
self.hop_length, | |
self.win_length, | |
self.window, | |
center=True, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=True) # [bs, 1025, 56] | |
mel_specgram = torch.matmul(spec_f.abs().pow(2).transpose(1, 2), self.fb).transpose(1, 2) | |
return mel_specgram[:, None, :, :] # [bs, 1, 80, time] | |
class LearnedDownSample(nn.Module): | |
def __init__(self, dim_in): | |
super().__init__() | |
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=( | |
3, 3), stride=(2, 2), groups=dim_in, padding=1)) | |
def forward(self, x): | |
return self.conv(x) | |
class ResBlk(nn.Module): | |
def __init__(self, | |
dim_in, dim_out): | |
super().__init__() | |
self.actv = nn.LeakyReLU(0.2) # .07 also nice | |
self.downsample_res = LearnedDownSample(dim_in) | |
self.learned_sc = dim_in != dim_out | |
self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1)) | |
self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1)) | |
if self.learned_sc: | |
self.conv1x1 = spectral_norm( | |
nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
def _shortcut(self, x): | |
if self.learned_sc: | |
x = self.conv1x1(x) | |
if x.shape[3] % 2 != 0: # [bs, 128, Freq, Time] | |
x = torch.cat([x, x[:, :, :, -1:]], dim=3) | |
return F.interpolate(x, scale_factor=.5, mode='nearest-exact') # F.avg_pool2d(x, 2) | |
def _residual(self, x): | |
x = self.actv(x) | |
x = self.conv1(x) | |
x = self.downsample_res(x) | |
x = self.actv(x) | |
x = self.conv2(x) | |
return x | |
def forward(self, x): | |
x = self._shortcut(x) + self._residual(x) | |
return x / math.sqrt(2) # unit variance | |
class StyleEncoder(nn.Module): | |
# for both acoustic & prosodic ref_s/p | |
def __init__(self, | |
dim_in=64, | |
style_dim=128, | |
max_conv_dim=512): | |
super().__init__() | |
blocks = [spectral_norm(nn.Conv2d(1, dim_in, 3, stride=1, padding=1))] | |
for _ in range(4): | |
dim_out = min(dim_in * 2, | |
max_conv_dim) | |
blocks += [ResBlk(dim_in, dim_out)] | |
dim_in = dim_out | |
blocks += [nn.LeakyReLU(0.24), # w/o this activation - produces no speech | |
spectral_norm(nn.Conv2d(dim_out, dim_out, 5, stride=1, padding=0)), | |
nn.LeakyReLU(0.2) # 0.3 sounds nice | |
] | |
self.shared = nn.Sequential(*blocks) | |
self.unshared = nn.Linear(dim_out, style_dim) | |
def forward(self, x): | |
x = self.shared(x) | |
x = x.mean(3, keepdims=True) # comment this line for time varying style vector | |
x = x.transpose(1, 3) | |
s = self.unshared(x) | |
return s | |
class LinearNorm(torch.nn.Module): | |
def __init__(self, in_dim, out_dim, bias=True): | |
super().__init__() | |
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) | |
def forward(self, x): | |
return self.linear_layer(x) | |
class LayerNorm(nn.Module): | |
def __init__(self, channels, eps=1e-5): | |
super().__init__() | |
self.channels = channels | |
self.eps = eps | |
self.gamma = nn.Parameter(torch.ones(channels)) | |
self.beta = nn.Parameter(torch.zeros(channels)) | |
def forward(self, x): | |
x = x.transpose(1, -1) | |
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | |
return x.transpose(1, -1) | |
class TextEncoder(nn.Module): | |
def __init__(self, channels, kernel_size, depth, n_symbols): | |
super().__init__() | |
self.embedding = nn.Embedding(n_symbols, channels) | |
padding = (kernel_size - 1) // 2 | |
self.cnn = nn.ModuleList() | |
for _ in range(depth): | |
self.cnn.append(nn.Sequential( | |
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)), | |
LayerNorm(channels), | |
nn.LeakyReLU(0.24)) | |
) | |
self.lstm = nn.LSTM(channels, channels//2, 1, | |
batch_first=True, bidirectional=True) | |
def forward(self, x): | |
x = self.embedding(x) # [B, T, emb] | |
x = x.transpose(1, 2) | |
for c in self.cnn: | |
x = c(x) | |
x = x.transpose(1, 2) | |
x, _ = self.lstm(x) | |
return x | |
class AdaLayerNorm(nn.Module): | |
def __init__(self, style_dim, channels=None, eps=1e-5): | |
super().__init__() | |
self.eps = eps | |
self.fc = nn.Linear(style_dim, 1024) | |
def forward(self, x, s): | |
h = self.fc(s) | |
gamma = h[:, :, :512] | |
beta = h[:, :, 512:1024] | |
x = F.layer_norm(x, (512, ), eps=self.eps) | |
x = (1 + gamma) * x + beta | |
return x # [1, 75, 512] | |
class ProsodyPredictor(nn.Module): | |
def __init__(self, style_dim, d_hid, nlayers, max_dur=50): | |
super().__init__() | |
self.text_encoder = DurationEncoder(sty_dim=style_dim, | |
d_model=d_hid, | |
nlayers=nlayers) # called outside forward | |
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, | |
1, batch_first=True, bidirectional=True) | |
self.duration_proj = LinearNorm(d_hid, max_dur) | |
self.shared = nn.LSTM(d_hid + style_dim, d_hid // | |
2, 1, batch_first=True, bidirectional=True) | |
self.F0 = nn.ModuleList([ | |
AdainResBlk1d(d_hid, d_hid, style_dim), | |
AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True), | |
AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim), | |
]) | |
self.N = nn.ModuleList([ | |
AdainResBlk1d(d_hid, d_hid, style_dim), | |
AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True), | |
AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim) | |
]) | |
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
def F0Ntrain(self, x, s): | |
x, _ = self.shared(x) # [bs, time, ch] LSTM | |
x = x.transpose(1, 2) # [bs, ch, time] | |
F0 = x | |
for block in self.F0: | |
# print(f'LOOP {F0.shape=} {s.shape=}\n') | |
# )N F0.shape=torch.Size([1, 512, 147]) s.shape=torch.Size([1, 128]) | |
# This is an AdainResBlk1d expects conv1d dimensions | |
F0 = block(F0, s) | |
F0 = self.F0_proj(F0) | |
N = x | |
for block in self.N: | |
N = block(N, s) | |
N = self.N_proj(N) | |
return F0, N | |
def forward(self, d_en=None, s=None): | |
blend = self.text_encoder(d_en, s) | |
x, _ = self.lstm(blend) | |
dur = self.duration_proj(x) # [bs, 150, 50] | |
_, input_length, classifier_50 = dur.shape | |
dur = dur[0, :, :] | |
dur = torch.sigmoid(dur).sum(1) | |
dur = dur.round().clamp(min=1).to(torch.int64) | |
aln_trg = torch.zeros(1, | |
dur.sum(), | |
input_length, | |
device=s.device) | |
c_frame = 0 | |
for i in range(input_length): | |
aln_trg[:, c_frame:c_frame + dur[i], i] = 1 | |
c_frame += dur[i] | |
en = torch.bmm(aln_trg, blend) | |
F0_pred, N_pred = self.F0Ntrain(en, s) | |
return aln_trg, F0_pred, N_pred | |
class DurationEncoder(nn.Module): | |
def __init__(self, sty_dim=128, d_model=512, nlayers=3): | |
super().__init__() | |
self.lstms = nn.ModuleList() | |
for _ in range(nlayers): | |
self.lstms.append(nn.LSTM(d_model + sty_dim, | |
d_model // 2, | |
num_layers=1, | |
batch_first=True, | |
bidirectional=True | |
)) | |
self.lstms.append(AdaLayerNorm(sty_dim, d_model)) | |
def forward(self, x, style): | |
_, _, input_lengths = x.shape # [bs, 512, time] | |
style = _tile(style, length=x.shape[2]).transpose(1, 2) | |
x = x.transpose(1, 2) | |
for block in self.lstms: | |
if isinstance(block, AdaLayerNorm): | |
x = block(x, style) # LSTM has transposed x | |
else: | |
x = torch.cat([x, style], axis=2) | |
# LSTM | |
x,_ = block(x) # expects [bs, time, chan] OUTPUTS [bs, time, 2*chan] 2x FROM BIDIRECTIONAL | |
return torch.cat([x, style], axis=2) # predictor.lstm() | |