Dionyssos's picture
https://github.com/audeering/shift
ab2d9a4
import torch
import nltk
nltk.download('punkt', download_dir='./') # COMMENT IF DOWNLOADED
nltk.download('punkt_tab', download_dir='./') # COMMENT IF DOWNLOADED
nltk.data.path.append('.')
import librosa
import audiofile
import torch.nn.functional as F
import math
import numpy as np
import torch.nn as nn
import string
import textwrap
import phonemizer
from espeak_util import set_espeak_library
from transformers import AlbertConfig, AlbertModel
from huggingface_hub import hf_hub_download
from nltk.tokenize import word_tokenize
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils.parametrizations import weight_norm
from torch.nn.utils import spectral_norm
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
MAX_PHONEMES = 424 # For OOM is the max length of single (non-split) sentence for StyleTTS2 inference
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
class TextCleaner:
def __init__(self, dummy=None):
self.word_index_dictionary = dicts
print(len(dicts))
def __call__(self, text):
indexes = []
for char in text:
try:
indexes.append(self.word_index_dictionary[char])
except KeyError:
# `=NONVOCAL == \x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~\x7f
# print(f'NonVOCAL {char}', end='\r')
pass
return indexes
set_espeak_library()
textclenaer = TextCleaner()
global_phonemizer = phonemizer.backend.EspeakBackend(language="en-us", preserve_punctuation=True, with_stress=True)
def _del_prefix(d):
# del ".module"
out = {}
for k, v in d.items():
out[k[7:]] = v
return out
class StyleTTS2(nn.Module):
def __init__(self):
super().__init__()
albert_base_configuration = AlbertConfig(vocab_size=178,
hidden_size=768,
num_attention_heads=12,
intermediate_size=2048,
max_position_embeddings=512,
num_hidden_layers=12,
dropout=0.1)
self.bert = AlbertModel(albert_base_configuration)
state_dict = torch.load(hf_hub_download(repo_id='dkounadis/artificial-styletts2',
filename='Utils/PLBERT/step_1000000.pth'),
map_location='cpu')['net']
new_state_dict = {}
for k, v in state_dict.items():
name = k[7:] # remove `module.`
if name.startswith('encoder.'):
name = name[8:] # remove `encoder.`
new_state_dict[name] = v
del new_state_dict["embeddings.position_ids"]
self.bert.load_state_dict(new_state_dict, strict=True)
self.decoder = Decoder(dim_in=512,
style_dim=128,
dim_out=80, # n_mels
resblock_kernel_sizes=[3, 7, 11],
upsample_rates=[10, 5, 3, 2],
upsample_initial_channel=512,
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
upsample_kernel_sizes=[20, 10, 6, 4])
self.text_encoder = TextEncoder(channels=512,
kernel_size=5,
depth=3, # args['model_params']['n_layer'],
n_symbols=178, # args['model_params']['n_token']
)
self.predictor = ProsodyPredictor(style_dim=128,
d_hid=512,
nlayers=3, # OFFICIAL config.nlayers=5;
max_dur=50)
self.style_encoder = StyleEncoder()
self.predictor_encoder = StyleEncoder()
self.bert_encoder = torch.nn.Linear(self.bert.config.hidden_size, 512)
self.mel_spec = MelSpec()
params = torch.load(hf_hub_download(repo_id='yl4579/StyleTTS2-LibriTTS',
filename='Models/LibriTTS/epochs_2nd_00020.pth'),
map_location='cpu')['net']
self.bert.load_state_dict(_del_prefix(params['bert']), strict=True)
self.bert_encoder.load_state_dict(_del_prefix(params['bert_encoder']), strict=True)
self.predictor.load_state_dict(_del_prefix(params['predictor']), strict=True)
self.decoder.load_state_dict(_del_prefix(params['decoder']), strict=True)
self.text_encoder.load_state_dict(_del_prefix(params['text_encoder']), strict=True)
self.predictor_encoder.load_state_dict(_del_prefix(params['predictor_encoder']), strict=True)
self.style_encoder.load_state_dict(_del_prefix(params['style_encoder']), strict=True)
# FOR LSTM
for n, p in self.named_parameters():
p.requires_grad = False
self.eval()
def device(self):
return self.style_encoder.unshared.weight.device
def compute_style(self, wav_file=None):
x, sr = librosa.load(wav_file, sr=24000)
x, _ = librosa.effects.trim(x, top_db=30)
if sr != 24000:
x = librosa.resample(x, sr, 24000)
# LOGMEL - Has 16KHz default basisc - Called on 24KHz .wav
x = torch.from_numpy(x[None, :]).to(device=self.device(),
dtype=torch.float)
mel_tensor = (torch.log(1e-5 + self.mel_spec(x)) + 4) / 4
#mel_tensor = preprocess(audio).to(device)
ref_s = self.style_encoder(mel_tensor)
ref_p = self.predictor_encoder(mel_tensor) # [bs, 11, 1, 128]
s = torch.cat([ref_s, ref_p], dim=3) # [bs, 11, 1, 256]
s = s[:, :, 0, :].transpose(1, 2) # [1, 128, 11]
return s # [1, 128, 11]
def inference(self,
text,
ref_s=None):
'''text may become too long when phonemized'''
if isinstance(ref_s, str):
ref_s = self.compute_style(ref_s)
else:
pass # assume ref_s = precomputed style vector
# text = transliterate_number(text, lang='en').strip()
# as we are in english transliteration is already done by the text cleaner?
# somehow we have phonemes in text that try to be rephonemized
# The ds txt should be only ascii
if isinstance(text, str):
_translator = str.maketrans('', '', string.punctuation)
text = [sub_sent.translate(_translator) + '.' for sub_sent in textwrap.wrap(text, 74)]
# # text = nltk.sent_tokenize(text)
# # text = [i for sent in sentences for i in textwrap.wrap(sent, width=120)]
# # text = textwrap.wrap(text, width=MAX_PHONEMES) # phonemes thus sent_tokenize() can't split them in sentences
device = ref_s.device
total = []
for _t in text:
_t = global_phonemizer.phonemize([_t])
_t = word_tokenize(_t[0])
_t = ' '.join(_t)
tokens = textclenaer(_t)[:MAX_PHONEMES] + [4] # textclenaer('.;?!') = [4,1,6,5] # append . punctuation to assure proper sound termination (pulse Issue)
# After filter we should assure is terminating as a sentence
# print(len(_t), len(tokens), 'Msi')#, textclenaer('.;?!'))
# ================================= Delete Phonemes If len(phonemes) > len(text) === OOM during training
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
hidden_states = self.text_encoder(tokens)
bert_dur = self.bert(tokens, attention_mask=torch.ones_like(tokens)
).last_hidden_state
d_en = self.bert_encoder(bert_dur).transpose(-1, -2)
aln_trg, F0_pred, N_pred = self.predictor(d_en=d_en, s=ref_s[:, 128:, :])
asr = torch.bmm(aln_trg, hidden_states)
asr = asr.transpose(1, 2)
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
x = self.decoder(asr=asr,
F0_curve=F0_pred,
N=N_pred,
s=ref_s[:, :128, :]) # different part of ref_s
# print(x.shape, 'TTS TTS TTS TTS')
if x.shape[2] < 100:
x = torch.zeros(1, 1, 1000, device=self.device()) # silence if this sentence was empty
# NORMALIS / Crop Scratch at end (The endingscratch sound is not solved even with nltk.sentence split & punctuation)
x = x[..., 40:-4000]
# x /= x.abs().max() + 1e-7 # preserve as torch
# return x
if x.shape[2] == 0:
# nohing to vocode
x = torch.zeros(1, 1, 1000, device=self.device())
total.append(x)
# --
total = 1.94 * torch.cat(total, 2) # 1.94 * Perhaps exceeding -1,1 affects MIMI encode
total /= 1.02 * total.abs().max() + 1e-7
# --
return total
def get_padding(kernel_size, dilation=1):
return int((kernel_size*dilation - dilation)/2)
def _tile(x,
length=None):
x = x.repeat(1, 1, int(length / x.shape[2]) + 1)[:, :, :length]
return x
class AdaIN1d(nn.Module):
# used by HiFiGan & ProsodyPredictor
def __init__(self, style_dim, num_features):
super().__init__()
self.norm = nn.InstanceNorm1d(num_features, affine=False)
self.fc = nn.Linear(style_dim, num_features*2)
def forward(self, x, s):
# x = torch.Size([1, 512, 248]) same as output
# s = torch.Size([1, 7, 1, 128])
s = self.fc(s.transpose(1, 2)).transpose(1, 2)
s = _tile(s, length=x.shape[2])
gamma, beta = torch.chunk(s, chunks=2, dim=1)
return (1+gamma) * self.norm(x) + beta
class AdaINResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
super(AdaINResBlock1, self).__init__()
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
# self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
# self.convs2.apply(init_weights)
self.adain1 = nn.ModuleList([
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
])
self.adain2 = nn.ModuleList([
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
])
self.alpha1 = nn.ParameterList(
[nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
self.alpha2 = nn.ParameterList(
[nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
def forward(self, x, s):
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
xt = n1(x, s) # THIS IS ADAIN - EXPECTS conv1d dims
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
xt = c1(xt)
xt = n2(xt, s) # THIS IS ADAIN - EXPECTS conv1d dims
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
xt = c2(xt)
x = xt + x
return x
class SourceModuleHnNSF(torch.nn.Module):
def __init__(self):
super().__init__()
self.harmonic_num = 8
self.l_linear = torch.nn.Linear(self.harmonic_num + 1, 1)
self.upsample_scale = 300
def forward(self, x):
# --
x = torch.multiply(x, torch.FloatTensor(
[[range(1, self.harmonic_num + 2)]]).to(x.device)) # [1, 145200, 9]
# modulo of negative f0_values => -21 % 10 = 9 as -3*10 + 9 = 21 NOTICE THAT f0_values IS SIGNED
rad_values = x / 25647 #).clamp(0, 1)
# rad_values = torch.where(torch.logical_or(rad_values < 0, rad_values > 1), 0.5, rad_values)
rad_values = rad_values % 1 # % of neg values
rad_values = F.interpolate(rad_values.transpose(1, 2),
scale_factor=1/self.upsample_scale,
mode='linear').transpose(1, 2)
# 1.89 sounds also nice has woofer at punctuation
phase = torch.cumsum(rad_values, dim=1) * 1.84 * np.pi
phase = F.interpolate(phase.transpose(1, 2) * self.upsample_scale,
scale_factor=self.upsample_scale, mode='linear').transpose(1, 2)
x = .009 * phase.sin()
# --
x = self.l_linear(x).tanh()
return x
class Generator(torch.nn.Module):
def __init__(self,
style_dim,
resblock_kernel_sizes,
upsample_rates,
upsample_initial_channel,
resblock_dilation_sizes,
upsample_kernel_sizes):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.m_source = SourceModuleHnNSF()
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
self.noise_convs = nn.ModuleList()
self.ups = nn.ModuleList()
self.noise_res = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
c_cur = upsample_initial_channel // (2 ** (i + 1))
self.ups.append(weight_norm(ConvTranspose1d(upsample_initial_channel//(2**i),
upsample_initial_channel//(
2**(i+1)),
k, u, padding=(u//2 + u % 2), output_padding=u % 2)))
if i + 1 < len(upsample_rates):
stride_f0 = np.prod(upsample_rates[i + 1:])
self.noise_convs.append(Conv1d(
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
self.noise_res.append(AdaINResBlock1(
c_cur, 7, [1, 3, 5], style_dim))
else:
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
self.noise_res.append(AdaINResBlock1(
c_cur, 11, [1, 3, 5], style_dim))
self.resblocks = nn.ModuleList()
self.alphas = nn.ParameterList()
self.alphas.append(nn.Parameter(
torch.ones(1, upsample_initial_channel, 1)))
for i in range(len(self.ups)):
ch = upsample_initial_channel//(2**(i+1))
self.alphas.append(nn.Parameter(torch.ones(1, ch, 1)))
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(AdaINResBlock1(ch, k, d, style_dim))
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
def forward(self, x, s, f0):
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 484]) GENERAT 249
f0 = self.f0_upsamp(f0).transpose(1, 2)
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 145200, 1]) GENERAT 253
# [1, 145400, 1] f0 enters already upsampled to full wav 24kHz length
har_source = self.m_source(f0)
har_source = har_source.transpose(1, 2)
for i in range(self.num_upsamples):
x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2)
x_source = self.noise_convs[i](har_source)
x_source = self.noise_res[i](x_source, s)
x = self.ups[i](x)
x = x + x_source
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x, s)
else:
xs += self.resblocks[i*self.num_kernels+j](x, s)
x = xs / self.num_kernels
# x = x + (1 / self.alphas[i+1]) * (torch.sin(self.alphas[i+1] * x) ** 2) # noisy
x = self.conv_post(x)
x = torch.tanh(x)
return x
class AdainResBlk1d(nn.Module):
# also used in ProsodyPredictor()
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
upsample='none', dropout_p=0.0):
super().__init__()
self.actv = actv
self.upsample_type = upsample
self.upsample = UpSample1d(upsample)
self.learned_sc = dim_in != dim_out
self._build_weights(dim_in, dim_out, style_dim)
if upsample == 'none':
self.pool = nn.Identity()
else:
self.pool = weight_norm(nn.ConvTranspose1d(
dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
def _build_weights(self, dim_in, dim_out, style_dim):
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
self.norm1 = AdaIN1d(style_dim, dim_in)
self.norm2 = AdaIN1d(style_dim, dim_out)
if self.learned_sc:
self.conv1x1 = weight_norm(
nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
def _shortcut(self, x):
x = self.upsample(x)
if self.learned_sc:
x = self.conv1x1(x)
return x
def _residual(self, x, s):
x = self.norm1(x, s)
x = self.actv(x)
x = self.pool(x)
x = self.conv1(x)
x = self.norm2(x, s)
x = self.actv(x)
x = self.conv2(x)
return x
def forward(self, x, s):
out = self._residual(x, s)
out = (out + self._shortcut(x)) / math.sqrt(2)
return out
class UpSample1d(nn.Module):
def __init__(self, layer_type):
super().__init__()
self.layer_type = layer_type
def forward(self, x):
if self.layer_type == 'none':
return x
else:
return F.interpolate(x, scale_factor=2, mode='nearest-exact')
class Decoder(nn.Module):
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
resblock_kernel_sizes=[3, 7, 11],
upsample_rates=[10, 5, 3, 2],
upsample_initial_channel=512,
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
upsample_kernel_sizes=[20, 10, 6, 4]):
super().__init__()
self.decode = nn.ModuleList()
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(
1024 + 2 + 64, 512, style_dim, upsample=True))
self.F0_conv = weight_norm(
nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1)) # smooth
self.N_conv = weight_norm(
nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
self.asr_res = nn.Sequential(
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
)
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes)
def forward(self, asr=None, F0_curve=None, N=None, s=None):
F0 = self.F0_conv(F0_curve)
N = self.N_conv(N)
x = torch.cat([asr, F0, N], axis=1)
x = self.encode(x, s)
asr_res = self.asr_res(asr)
res = True
for block in self.decode:
if res:
x = torch.cat([x, asr_res, F0, N], axis=1)
x = block(x, s)
if block.upsample_type != "none":
res = False
x = self.generator(x, s, F0_curve)
return x
class MelSpec(torch.nn.Module):
def __init__(self,
sample_rate=17402, # https://github.com/fakerybakery/styletts2-cli/blob/main/msinference.py = Default 16000. However 17400 vocalises better also "en_US/vctk_p274"
n_fft=2048,
win_length=1200,
hop_length=300,
n_mels=80
):
'''avoids dependency on torchaudio'''
super().__init__()
self.n_fft = n_fft
self.win_length = win_length if win_length is not None else n_fft
self.hop_length = hop_length if hop_length is not None else self.win_length // 2
# --
f_min = 0.0
f_max = float(sample_rate // 2)
all_freqs = torch.linspace(0, sample_rate // 2, n_fft//2+1)
m_min = 2595.0 * math.log10(1.0 + (f_min / 700.0))
m_max = 2595.0 * math.log10(1.0 + (f_max / 700.0))
m_pts = torch.linspace(m_min, m_max, n_mels + 2)
f_pts = 700.0 * (10 ** (m_pts / 2595.0) - 1.0)
f_diff = f_pts[1:] - f_pts[:-1] # (n_mels + 1)
slopes = f_pts.unsqueeze(0) - all_freqs.unsqueeze(1)
zero = torch.zeros(1)
down_slopes = (-1.0 * slopes[:, :-2]) / f_diff[:-1] # (n_freqs, n_mels)
up_slopes = slopes[:, 2:] / f_diff[1:] # (n_freqs, n_mels)
fb = torch.max(zero, torch.min(down_slopes, up_slopes))
# --
self.register_buffer('fb', fb, persistent=False)
window = torch.hann_window(self.win_length)
self.register_buffer('window', window, persistent=False)
def forward(self, x):
spec_f = torch.stft(x,
self.n_fft,
self.hop_length,
self.win_length,
self.window,
center=True,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True) # [bs, 1025, 56]
mel_specgram = torch.matmul(spec_f.abs().pow(2).transpose(1, 2), self.fb).transpose(1, 2)
return mel_specgram[:, None, :, :] # [bs, 1, 80, time]
class LearnedDownSample(nn.Module):
def __init__(self, dim_in):
super().__init__()
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(
3, 3), stride=(2, 2), groups=dim_in, padding=1))
def forward(self, x):
return self.conv(x)
class ResBlk(nn.Module):
def __init__(self,
dim_in, dim_out):
super().__init__()
self.actv = nn.LeakyReLU(0.2) # .07 also nice
self.downsample_res = LearnedDownSample(dim_in)
self.learned_sc = dim_in != dim_out
self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1))
self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1))
if self.learned_sc:
self.conv1x1 = spectral_norm(
nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False))
def _shortcut(self, x):
if self.learned_sc:
x = self.conv1x1(x)
if x.shape[3] % 2 != 0: # [bs, 128, Freq, Time]
x = torch.cat([x, x[:, :, :, -1:]], dim=3)
return F.interpolate(x, scale_factor=.5, mode='nearest-exact') # F.avg_pool2d(x, 2)
def _residual(self, x):
x = self.actv(x)
x = self.conv1(x)
x = self.downsample_res(x)
x = self.actv(x)
x = self.conv2(x)
return x
def forward(self, x):
x = self._shortcut(x) + self._residual(x)
return x / math.sqrt(2) # unit variance
class StyleEncoder(nn.Module):
# for both acoustic & prosodic ref_s/p
def __init__(self,
dim_in=64,
style_dim=128,
max_conv_dim=512):
super().__init__()
blocks = [spectral_norm(nn.Conv2d(1, dim_in, 3, stride=1, padding=1))]
for _ in range(4):
dim_out = min(dim_in * 2,
max_conv_dim)
blocks += [ResBlk(dim_in, dim_out)]
dim_in = dim_out
blocks += [nn.LeakyReLU(0.24), # w/o this activation - produces no speech
spectral_norm(nn.Conv2d(dim_out, dim_out, 5, stride=1, padding=0)),
nn.LeakyReLU(0.2) # 0.3 sounds nice
]
self.shared = nn.Sequential(*blocks)
self.unshared = nn.Linear(dim_out, style_dim)
def forward(self, x):
x = self.shared(x)
x = x.mean(3, keepdims=True) # comment this line for time varying style vector
x = x.transpose(1, 3)
s = self.unshared(x)
return s
class LinearNorm(torch.nn.Module):
def __init__(self, in_dim, out_dim, bias=True):
super().__init__()
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
def forward(self, x):
return self.linear_layer(x)
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
x = x.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
return x.transpose(1, -1)
class TextEncoder(nn.Module):
def __init__(self, channels, kernel_size, depth, n_symbols):
super().__init__()
self.embedding = nn.Embedding(n_symbols, channels)
padding = (kernel_size - 1) // 2
self.cnn = nn.ModuleList()
for _ in range(depth):
self.cnn.append(nn.Sequential(
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
LayerNorm(channels),
nn.LeakyReLU(0.24))
)
self.lstm = nn.LSTM(channels, channels//2, 1,
batch_first=True, bidirectional=True)
def forward(self, x):
x = self.embedding(x) # [B, T, emb]
x = x.transpose(1, 2)
for c in self.cnn:
x = c(x)
x = x.transpose(1, 2)
x, _ = self.lstm(x)
return x
class AdaLayerNorm(nn.Module):
def __init__(self, style_dim, channels=None, eps=1e-5):
super().__init__()
self.eps = eps
self.fc = nn.Linear(style_dim, 1024)
def forward(self, x, s):
h = self.fc(s)
gamma = h[:, :, :512]
beta = h[:, :, 512:1024]
x = F.layer_norm(x, (512, ), eps=self.eps)
x = (1 + gamma) * x + beta
return x # [1, 75, 512]
class ProsodyPredictor(nn.Module):
def __init__(self, style_dim, d_hid, nlayers, max_dur=50):
super().__init__()
self.text_encoder = DurationEncoder(sty_dim=style_dim,
d_model=d_hid,
nlayers=nlayers) # called outside forward
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2,
1, batch_first=True, bidirectional=True)
self.duration_proj = LinearNorm(d_hid, max_dur)
self.shared = nn.LSTM(d_hid + style_dim, d_hid //
2, 1, batch_first=True, bidirectional=True)
self.F0 = nn.ModuleList([
AdainResBlk1d(d_hid, d_hid, style_dim),
AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True),
AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim),
])
self.N = nn.ModuleList([
AdainResBlk1d(d_hid, d_hid, style_dim),
AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True),
AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim)
])
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
def F0Ntrain(self, x, s):
x, _ = self.shared(x) # [bs, time, ch] LSTM
x = x.transpose(1, 2) # [bs, ch, time]
F0 = x
for block in self.F0:
# print(f'LOOP {F0.shape=} {s.shape=}\n')
# )N F0.shape=torch.Size([1, 512, 147]) s.shape=torch.Size([1, 128])
# This is an AdainResBlk1d expects conv1d dimensions
F0 = block(F0, s)
F0 = self.F0_proj(F0)
N = x
for block in self.N:
N = block(N, s)
N = self.N_proj(N)
return F0, N
def forward(self, d_en=None, s=None):
blend = self.text_encoder(d_en, s)
x, _ = self.lstm(blend)
dur = self.duration_proj(x) # [bs, 150, 50]
_, input_length, classifier_50 = dur.shape
dur = dur[0, :, :]
dur = torch.sigmoid(dur).sum(1)
dur = dur.round().clamp(min=1).to(torch.int64)
aln_trg = torch.zeros(1,
dur.sum(),
input_length,
device=s.device)
c_frame = 0
for i in range(input_length):
aln_trg[:, c_frame:c_frame + dur[i], i] = 1
c_frame += dur[i]
en = torch.bmm(aln_trg, blend)
F0_pred, N_pred = self.F0Ntrain(en, s)
return aln_trg, F0_pred, N_pred
class DurationEncoder(nn.Module):
def __init__(self, sty_dim=128, d_model=512, nlayers=3):
super().__init__()
self.lstms = nn.ModuleList()
for _ in range(nlayers):
self.lstms.append(nn.LSTM(d_model + sty_dim,
d_model // 2,
num_layers=1,
batch_first=True,
bidirectional=True
))
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
def forward(self, x, style):
_, _, input_lengths = x.shape # [bs, 512, time]
style = _tile(style, length=x.shape[2]).transpose(1, 2)
x = x.transpose(1, 2)
for block in self.lstms:
if isinstance(block, AdaLayerNorm):
x = block(x, style) # LSTM has transposed x
else:
x = torch.cat([x, style], axis=2)
# LSTM
x,_ = block(x) # expects [bs, time, chan] OUTPUTS [bs, time, 2*chan] 2x FROM BIDIRECTIONAL
return torch.cat([x, style], axis=2) # predictor.lstm()