Advocate_Life_Style / lifestyle_app.py
DocUA's picture
Added the ability to configure custom prompts for the main lifestyle assistant. Implemented methods for setting, resetting to default, and getting the current prompt. Updated the Gradio interface for editing prompts, including a new “Edit Prompts” tab with the ability to preview changes. Added instructions for using prompt customization in the documentation. Made changes to the lifestyle profile to synchronize custom prompts with the session.
2f80714
# lifestyle_app.py - Main application class
import os
import json
import time
from datetime import datetime
from dataclasses import asdict
from typing import List, Dict, Optional, Tuple
from core_classes import (
ClinicalBackground, LifestyleProfile, ChatMessage, SessionState,
AIClientManager, PatientDataLoader,
MedicalAssistant,
# Active classifiers
EntryClassifier, TriageExitClassifier,
LifestyleSessionManager,
# Main Lifestyle Assistant
MainLifestyleAssistant,
# Soft medical triage
SoftMedicalTriage
)
from testing_lab import TestingDataManager, PatientTestingInterface, TestSession
from test_patients import TestPatientData
from file_utils import FileHandler
class ExtendedLifestyleJourneyApp:
"""Extended version of the app with Testing Lab functionality"""
def __init__(self):
self.api = AIClientManager()
# Active classifiers
self.entry_classifier = EntryClassifier(self.api)
self.triage_exit_classifier = TriageExitClassifier(self.api)
# LifestyleExitClassifier removed - functionality moved to MainLifestyleAssistant
# Assistants
self.medical_assistant = MedicalAssistant(self.api)
self.main_lifestyle_assistant = MainLifestyleAssistant(self.api)
self.soft_medical_triage = SoftMedicalTriage(self.api)
# Lifecycle manager
self.lifestyle_session_manager = LifestyleSessionManager(self.api)
# Testing Lab components
self.testing_manager = TestingDataManager()
self.testing_interface = PatientTestingInterface(self.testing_manager)
# Loading standard data
print("🔄 Loading standard patient data...")
self.clinical_background = PatientDataLoader.load_clinical_background()
self.lifestyle_profile = PatientDataLoader.load_lifestyle_profile()
print(f"✅ Loaded standard profile: {self.clinical_background.patient_name}")
# App state
self.chat_history: List[ChatMessage] = []
self.session_state = SessionState(
current_mode="none",
is_active_session=False,
session_start_time=None,
last_controller_decision={}
)
# Testing states
self.test_mode_active = False
self.current_test_patient = None
def load_test_patient(self, clinical_file, lifestyle_file) -> Tuple[str, str, List, str]:
"""Loads test patient from files"""
try:
# Read clinical background
clinical_content, error = FileHandler.read_uploaded_file(clinical_file, "clinical_background.json")
if error:
return error, "", [], self._get_status_info()
clinical_data, error = FileHandler.parse_json_file(clinical_content, "clinical_background.json")
if error:
return error, "", [], self._get_status_info()
# Read lifestyle profile
lifestyle_content, error = FileHandler.read_uploaded_file(lifestyle_file, "lifestyle_profile.json")
if error:
return error, "", [], self._get_status_info()
lifestyle_data, error = FileHandler.parse_json_file(lifestyle_content, "lifestyle_profile.json")
if error:
return error, "", [], self._get_status_info()
# Use common processing method
return self._process_patient_data(clinical_data, lifestyle_data, "")
except Exception as e:
return f"❌ File loading error: {str(e)}", "", [], self._get_status_info()
def load_quick_test_patient(self, patient_type: str) -> Tuple[str, str, List, str]:
"""Loads built-in test data for quick testing"""
patient_type_names = TestPatientData.get_patient_types()
try:
clinical_data, lifestyle_data = TestPatientData.get_patient_data(patient_type)
test_type_description = patient_type_names.get(patient_type, "")
result = self._process_patient_data(
clinical_data,
lifestyle_data,
f"⚡ **Quick test:** {test_type_description}"
)
return result
except ValueError as e:
return f"❌ {str(e)}", "", [], self._get_status_info()
except Exception as e:
return f"❌ Quick test loading error: {str(e)}", "", [], self._get_status_info()
def _process_patient_data(self, clinical_data: dict, lifestyle_data: dict, test_type_info: str = "") -> Tuple[str, str, List, str]:
"""Common code for processing patient data"""
debug_enabled = os.getenv("LOG_PROMPTS", "false").lower() == "true"
if debug_enabled:
print(f"🔄 _process_patient_data called with test_type_info: '{test_type_info}'")
# STEP 1: End previous test session if active
if self.test_mode_active and self.testing_interface.current_session:
if debug_enabled:
print("🔄 Ending previous test session...")
self.end_test_session("Automatically ended - new patient loaded")
# Clinical data validation
is_valid, errors = self.testing_manager.validate_clinical_background(clinical_data)
if not is_valid:
return f"❌ Clinical background validation error:\n" + "\n".join(errors), "", [], self._get_status_info()
# Lifestyle data validation
is_valid, errors = self.testing_manager.validate_lifestyle_profile(lifestyle_data)
if not is_valid:
return f"❌ Lifestyle profile validation error:\n" + "\n".join(errors), "", [], self._get_status_info()
# Create objects
self.clinical_background = ClinicalBackground(
patient_id="test_patient",
patient_name=lifestyle_data.get("patient_name", "Test Patient"),
patient_age=lifestyle_data.get("patient_age", "unknown"),
active_problems=clinical_data.get("patient_summary", {}).get("active_problems", []),
past_medical_history=clinical_data.get("patient_summary", {}).get("past_medical_history", []),
current_medications=clinical_data.get("patient_summary", {}).get("current_medications", []),
allergies=clinical_data.get("patient_summary", {}).get("allergies", ""),
vital_signs_and_measurements=clinical_data.get("vital_signs_and_measurements", []),
laboratory_results=clinical_data.get("laboratory_results", []),
assessment_and_plan=clinical_data.get("assessment_and_plan", ""),
critical_alerts=clinical_data.get("critical_alerts", []),
social_history=clinical_data.get("social_history", {}),
recent_clinical_events=clinical_data.get("recent_clinical_events_and_encounters", [])
)
self.lifestyle_profile = LifestyleProfile(
patient_name=lifestyle_data.get("patient_name", "Test Patient"),
patient_age=lifestyle_data.get("patient_age", "unknown"),
conditions=lifestyle_data.get("conditions", []),
primary_goal=lifestyle_data.get("primary_goal", ""),
exercise_preferences=lifestyle_data.get("exercise_preferences", []),
exercise_limitations=lifestyle_data.get("exercise_limitations", []),
dietary_notes=lifestyle_data.get("dietary_notes", []),
personal_preferences=lifestyle_data.get("personal_preferences", []),
journey_summary=lifestyle_data.get("journey_summary", ""),
last_session_summary=lifestyle_data.get("last_session_summary", ""),
next_check_in=lifestyle_data.get("next_check_in", "not set"),
progress_metrics=lifestyle_data.get("progress_metrics", {})
)
# Save test patient profile
patient_id = self.testing_manager.save_patient_profile(clinical_data, lifestyle_data)
self.current_test_patient = patient_id
# Activate test mode
self.test_mode_active = True
# STEP 2: COMPLETELY RESET CHAT STATE
self.chat_history = []
self.session_state = SessionState(
current_mode="none",
is_active_session=False,
session_start_time=None,
last_controller_decision={}
)
# Start test session
session_start_msg = self.testing_interface.start_test_session(
self.lifestyle_profile.patient_name
)
# Create initial chat message about new patient
welcome_content = f"🧪 **New test patient loaded: {self.lifestyle_profile.patient_name}**"
if test_type_info:
welcome_content += f"\n{test_type_info}"
welcome_content += "\n\nYou can start the dialogue. All interactions will be logged for analysis."
welcome_message = {
"role": "assistant",
"content": welcome_content
}
if debug_enabled:
print(f"✅ Created new patient: {self.lifestyle_profile.patient_name}")
print(f"💬 Welcome message: {welcome_content[:100]}...")
success_msg = f"""✅ **NEW TEST PATIENT LOADED**
👤 **Patient:** {self.lifestyle_profile.patient_name} ({self.lifestyle_profile.patient_age} years old)
🏥 **Active problems:** {len(self.clinical_background.active_problems)}
💊 **Medications:** {len(self.clinical_background.current_medications)}
🎯 **Lifestyle goal:** {self.lifestyle_profile.primary_goal[:100]}...
📋 **Patient ID:** {patient_id}
{session_start_msg}
🧪 **TEST MODE ACTIVATED** - all interactions will be logged.
💬 **CHAT RESET** - you can start a new conversation!"""
preview = self._generate_patient_preview()
# Return: result, preview, CHAT WITH WELCOME MESSAGE, UPDATED STATUS
if debug_enabled:
print(f"📤 Returning 4 values: success_msg, preview, chat=[1 message], status")
return success_msg, preview, [welcome_message], self._get_status_info()
def _generate_patient_preview(self) -> str:
"""Generates preview of loaded patient"""
if not self.clinical_background or not self.lifestyle_profile:
return "Patient data not loaded"
# Shortened lists for convenient viewing
active_problems = self.clinical_background.active_problems[:5]
medications = self.clinical_background.current_medications[:8]
conditions = self.lifestyle_profile.conditions[:5]
preview = f"""
📋 **MEDICAL PROFILE**
👤 **Name:** {self.clinical_background.patient_name}
🎂 **Age:** {self.lifestyle_profile.patient_age}
🏥 **Active problems ({len(self.clinical_background.active_problems)}):**
{chr(10).join([f"• {problem}" for problem in active_problems])}
{"..." if len(self.clinical_background.active_problems) > 5 else ""}
💊 **Medications ({len(self.clinical_background.current_medications)}):**
{chr(10).join([f"• {med}" for med in medications])}
{"..." if len(self.clinical_background.current_medications) > 8 else ""}
🚨 **Critical alerts:** {len(self.clinical_background.critical_alerts)}
🧪 **Laboratory results:** {len(self.clinical_background.laboratory_results)}
💚 **LIFESTYLE PROFILE**
🎯 **Primary goal:** {self.lifestyle_profile.primary_goal}
🏃 **Conditions:** {', '.join(conditions)}
{"..." if len(self.lifestyle_profile.conditions) > 5 else ""}
⚠️ **Limitations:** {len(self.lifestyle_profile.exercise_limitations)}
🍽️ **Nutrition:** {len(self.lifestyle_profile.dietary_notes)} notes
📈 **Progress metrics:** {len(self.lifestyle_profile.progress_metrics)} indicators
"""
return preview
def process_message(self, message: str, history) -> Tuple[List, str]:
"""New message processing logic with three classifiers"""
start_time = time.time()
if not message.strip():
return history, self._get_status_info()
# Add user message to history
user_msg = ChatMessage(
timestamp=datetime.now().strftime("%H:%M"),
role="user",
message=message,
mode="pending" # Will be updated after classification
)
self.chat_history.append(user_msg)
# NEW LOGIC: Determine current state and process accordingly
response = ""
final_mode = "none"
if self.session_state.current_mode == "lifestyle":
# If already in lifestyle mode, check if need to exit
response, final_mode = self._handle_lifestyle_mode(message)
else:
# If not in lifestyle mode, use Entry Classifier
response, final_mode = self._handle_entry_classification(message)
# Update mode in user message
user_msg.mode = final_mode
# Add assistant response
assistant_msg = ChatMessage(
timestamp=datetime.now().strftime("%H:%M"),
role="assistant",
message=response,
mode=final_mode
)
self.chat_history.append(assistant_msg)
# Update session state
self.session_state.current_mode = final_mode
self.session_state.is_active_session = final_mode != "none"
# Logging for testing
response_time = time.time() - start_time
if self.test_mode_active and self.testing_interface.current_session:
self.testing_interface.log_message_interaction(
final_mode,
{"mode": final_mode, "reasoning": "new_logic"},
response_time,
False
)
# Update Gradio history
if not history:
history = []
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history, self._get_status_info()
def _handle_entry_classification(self, message: str) -> Tuple[str, str]:
"""Processes message through Entry Classifier with new K/V/T format"""
# 1. Classify message
classification = self.entry_classifier.classify(message, self.clinical_background)
self.session_state.entry_classification = classification
lifestyle_mode = classification.get("V", "off")
if lifestyle_mode == "off":
response = self.soft_medical_triage.conduct_triage(
message,
self.clinical_background,
self.chat_history
)
return response, "medical"
elif lifestyle_mode == "on":
# Direct to lifestyle mode
self.session_state.lifestyle_session_length = 1
result = self.main_lifestyle_assistant.process_message(
message, self.chat_history, self.clinical_background, self.lifestyle_profile, 1
)
return result.get("message", "How are you feeling?"), "lifestyle"
elif lifestyle_mode == "hybrid":
# Hybrid flow: medical triage + possible lifestyle
return self._handle_hybrid_flow(message, classification)
else:
# Fallback to medical mode with soft triage
response = self.soft_medical_triage.conduct_triage(
message,
self.clinical_background,
self.chat_history # Додано!
)
return response, "medical"
def _handle_hybrid_flow(self, message: str, classification: Dict) -> Tuple[str, str]:
"""Handles HYBRID messages: medical triage + lifestyle assessment"""
# 1. Medical triage (use regular medical assistant for hybrid)
medical_response = self.medical_assistant.generate_response(
message, self.chat_history, self.clinical_background
)
# Save triage result
if medical_response:
self.session_state.last_triage_summary = medical_response[:200] + "..."
else:
self.session_state.last_triage_summary = "Medical assessment completed"
# 2. Assess readiness for lifestyle
triage_assessment = self.triage_exit_classifier.assess_readiness(
self.clinical_background,
self.session_state.last_triage_summary,
message
)
if triage_assessment.get("ready_for_lifestyle", False):
# Switch to lifestyle mode with new assistant
self.session_state.lifestyle_session_length = 1
result = self.main_lifestyle_assistant.process_message(
message, self.chat_history, self.clinical_background, self.lifestyle_profile, 1
)
# Combine responses
combined_response = f"{medical_response}\n\n---\n\n💚 **Lifestyle coaching:**\n{result.get('message', 'How are you feeling?')}"
return combined_response, "lifestyle"
else:
# Stay in medical mode
return medical_response, "medical"
def _handle_lifestyle_mode(self, message: str) -> Tuple[str, str]:
"""Handles messages in lifestyle mode with new Main Lifestyle Assistant"""
# Use new Main Lifestyle Assistant
result = self.main_lifestyle_assistant.process_message(
message,
self.chat_history,
self.clinical_background,
self.lifestyle_profile,
self.session_state.lifestyle_session_length
)
action = result.get("action", "lifestyle_dialog")
response_message = result.get("message", "How are you feeling?")
if action == "close":
# End lifestyle session and update profile with LLM analysis
self.lifestyle_profile = self.lifestyle_session_manager.update_profile_after_session(
self.lifestyle_profile,
self.chat_history,
f"Automatic session end: {result.get('reasoning', 'MainLifestyleAssistant decided to close')}",
save_to_disk=True
)
# Switch to medical mode
medical_response = self.medical_assistant.generate_response(
message, self.chat_history, self.clinical_background
)
# Reset lifestyle counter
self.session_state.lifestyle_session_length = 0
return f"💚 **Lifestyle session completed.** {result.get('reasoning', '')}\n\n---\n\n{medical_response}", "medical"
else:
# Continue lifestyle mode (gather_info or lifestyle_dialog)
self.session_state.lifestyle_session_length += 1
return response_message, "lifestyle"
def end_test_session(self, notes: str = "") -> str:
"""Ends current test session"""
if not self.test_mode_active or not self.testing_interface.current_session:
return "❌ No active test session to end"
# Get current profile state
final_profile = {
"clinical_background": asdict(self.clinical_background),
"lifestyle_profile": asdict(self.lifestyle_profile),
"chat_history_length": len(self.chat_history)
}
result = self.testing_interface.end_test_session(final_profile, notes)
# Turn off test mode
self.test_mode_active = False
self.current_test_patient = None
return result
def get_test_results_summary(self) -> Tuple[str, List]:
"""Returns summary of all test results"""
sessions = self.testing_manager.get_all_test_sessions()
if not sessions:
return "📭 No saved test sessions", []
# Generate report
summary = self.testing_manager.generate_summary_report(sessions)
# Create detailed table of recent sessions
latest_sessions = sessions[:10] # Last 10 sessions
table_data = []
for session in latest_sessions:
table_data.append([
session.get('patient_name', 'N/A'),
session.get('timestamp', 'N/A')[:16], # Date and time only
session.get('total_messages', 0),
session.get('medical_messages', 0),
session.get('lifestyle_messages', 0),
session.get('escalations_count', 0),
f"{session.get('session_duration_minutes', 0):.1f} min",
session.get('notes', '')[:50] + "..." if len(session.get('notes', '')) > 50 else session.get('notes', '')
])
return summary, table_data
def export_test_results(self) -> str:
"""Exports test results"""
sessions = self.testing_manager.get_all_test_sessions()
if not sessions:
return "❌ No data to export"
csv_path = self.testing_manager.export_results_to_csv(sessions)
if csv_path and os.path.exists(csv_path):
return f"✅ Data exported to: {csv_path}"
else:
return "❌ Data export error"
def _get_ai_providers_status(self) -> str:
"""Get detailed AI providers status"""
try:
clients_info = self.api.get_all_clients_info()
status_lines = []
status_lines.append(f"🤖 **AI PROVIDERS STATUS:**")
status_lines.append(f"• Total API calls: {clients_info['total_calls']}")
status_lines.append(f"• Active clients: {clients_info['active_clients']}")
if clients_info['clients']:
status_lines.append("• Client details:")
for agent, info in clients_info['clients'].items():
if 'error' not in info:
provider = info['provider']
model = info['model']
fallback = " (fallback)" if info['using_fallback'] else ""
status_lines.append(f" - {agent}: {provider} ({model}){fallback}")
else:
status_lines.append(f" - {agent}: Error - {info['error']}")
return "\n".join(status_lines)
except Exception as e:
return f"🤖 **AI PROVIDERS STATUS:** Error - {e}"
def _get_status_info(self) -> str:
"""Extended status information with new logic"""
log_prompts_enabled = os.getenv("LOG_PROMPTS", "false").lower() == "true"
# Basic information
active_problems = self.clinical_background.active_problems[:3] if self.clinical_background.active_problems else ["No data"]
problems_text = "; ".join(active_problems)
if len(self.clinical_background.active_problems) > 3:
problems_text += f" and {len(self.clinical_background.active_problems) - 3} more..."
# K/V/T classification information
entry_info = ""
if self.session_state.entry_classification:
classification = self.session_state.entry_classification
entry_info = f"""
🔍 **LAST CLASSIFICATION (K/V/T):**
• K: {classification.get('K', 'N/A')}
• V: {classification.get('V', 'N/A')}
• T: {classification.get('T', 'N/A')}"""
# Lifestyle session information
lifestyle_info = ""
if self.session_state.current_mode == "lifestyle":
lifestyle_info = f"""
💚 **LIFESTYLE SESSION:**
• Messages in session: {self.session_state.lifestyle_session_length}
• Last summary: {self.lifestyle_profile.last_session_summary[:100]}...
"""
# Test information
test_status = ""
if self.test_mode_active:
test_status += f"\n👤 **ACTIVE TEST PATIENT: {self.lifestyle_profile.patient_name}**"
current_session = self.testing_interface.current_session
if current_session:
test_status += f"""
🧪 **TEST SESSION ACTIVE**
• ID: {current_session.session_id}
• Messages: {current_session.total_messages}
• Medical: {current_session.medical_messages} | Lifestyle: {current_session.lifestyle_messages}
• Escalations: {current_session.escalations_count}
"""
else:
test_status += f"\n📝 Test session not active (loaded but not started)"
status = f"""
📊 **SESSION STATE (NEW LOGIC)**
• Mode: {self.session_state.current_mode.upper()}
• Active: {'✅' if self.session_state.is_active_session else '❌'}
• Logging: {'📝 ACTIVE' if log_prompts_enabled else '❌ DISABLED'}
{entry_info}
{lifestyle_info}
👤 **PATIENT: {self.clinical_background.patient_name}**{' (TEST)' if self.test_mode_active else ''}
• Age: {self.lifestyle_profile.patient_age}
• Active problems: {problems_text}
• Lifestyle goal: {self.lifestyle_profile.primary_goal}
🏥 **MEDICAL CONTEXT:**
• Medications: {len(self.clinical_background.current_medications)}
• Critical alerts: {len(self.clinical_background.critical_alerts)}
• Recent vitals: {len(self.clinical_background.vital_signs_and_measurements)}
🔧 **AI STATISTICS:**
• Total API calls: {self.api.call_counter}
• Active AI clients: {len(self.api._clients)}
{self._get_ai_providers_status()}
{test_status}"""
return status
def reset_session(self) -> Tuple[List, str]:
"""Session reset with new logic"""
# If test mode is active, end session
if self.test_mode_active and self.testing_interface.current_session:
self.end_test_session("Session reset by user")
# If there was an active lifestyle session, update profile
if self.session_state.current_mode == "lifestyle" and self.session_state.lifestyle_session_length > 0:
self.lifestyle_profile = self.lifestyle_session_manager.update_profile_after_session(
self.lifestyle_profile,
self.chat_history,
"Session reset by user",
save_to_disk=True
)
self.chat_history = []
self.session_state = SessionState(
current_mode="none",
is_active_session=False,
session_start_time=None,
last_controller_decision={},
lifestyle_session_length=0,
last_triage_summary="",
entry_classification={}
)
return [], self._get_status_info()
def end_conversation_with_profile_update(self) -> Tuple[List, str, str]:
"""Ends conversation with intelligent profile update and saves to disk"""
result_message = ""
# Check if there's an active lifestyle session to update
if (self.session_state.current_mode == "lifestyle" and
self.session_state.lifestyle_session_length > 0 and
len(self.chat_history) > 0):
try:
print("🔄 User initiated conversation end - updating lifestyle profile...")
# Update profile with LLM analysis and save to disk
self.lifestyle_profile = self.lifestyle_session_manager.update_profile_after_session(
self.lifestyle_profile,
self.chat_history,
"User initiated conversation end",
save_to_disk=True
)
result_message = f"""✅ **Conversation ended successfully**
🧠 **Profile Analysis Complete**: Lifestyle profile has been intelligently updated based on your session
💾 **Saved to Disk**: Changes have been permanently saved to lifestyle_profile.json
📊 **Session Summary**: {len([m for m in self.chat_history if m.mode == 'lifestyle'])} lifestyle messages analyzed
Your progress and preferences have been recorded for future sessions."""
except Exception as e:
print(f"❌ Error updating profile on conversation end: {e}")
result_message = f"⚠️ **Conversation ended** but there was an error updating your profile: {str(e)}"
else:
result_message = "✅ **Conversation ended** - No active lifestyle session to update"
# If active test mode, end test session
if self.test_mode_active and self.testing_interface.current_session:
self.end_test_session("User ended conversation manually")
# Reset session state
self.chat_history = []
self.session_state = SessionState(
current_mode="none",
is_active_session=False,
session_start_time=None,
last_controller_decision={},
lifestyle_session_length=0,
last_triage_summary="",
entry_classification={}
)
return [], self._get_status_info(), result_message
def sync_custom_prompts_from_session(self, session_data):
"""Синхронізує кастомні промпти з SessionData"""
from prompts import SYSTEM_PROMPT_MAIN_LIFESTYLE
if hasattr(session_data, 'custom_prompts') and session_data.custom_prompts:
main_lifestyle_prompt = session_data.custom_prompts.get('main_lifestyle')
if main_lifestyle_prompt and main_lifestyle_prompt != SYSTEM_PROMPT_MAIN_LIFESTYLE:
self.main_lifestyle_assistant.set_custom_system_prompt(main_lifestyle_prompt)
else:
self.main_lifestyle_assistant.reset_to_default_prompt()
def get_current_prompt_info(self) -> Dict[str, str]:
"""Отримує інформацію про поточні промпти"""
current_prompt = self.main_lifestyle_assistant.get_current_system_prompt()
is_custom = self.main_lifestyle_assistant.custom_system_prompt is not None
return {
"is_custom": is_custom,
"prompt_length": len(current_prompt),
"prompt_preview": current_prompt[:100] + "..." if len(current_prompt) > 100 else current_prompt,
"status": "Custom prompt active" if is_custom else "Default prompt active"
}