File size: 112,423 Bytes
4305b0a
 
d9837be
69f6ed5
 
4305b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff4c876
4305b0a
69f6ed5
4305b0a
 
69f6ed5
4305b0a
 
 
 
69f6ed5
 
4305b0a
 
 
ff4c876
4305b0a
9d7d2e0
4305b0a
 
9d7d2e0
4305b0a
ff4c876
 
 
4305b0a
 
 
 
 
 
 
 
 
69f6ed5
4305b0a
 
69f6ed5
4305b0a
 
 
 
 
 
69f6ed5
 
 
 
4305b0a
 
 
 
 
 
69f6ed5
4305b0a
 
 
 
 
 
 
69f6ed5
4305b0a
 
69f6ed5
4305b0a
 
 
 
 
 
 
 
 
69f6ed5
ff4c876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ebc627
 
ff4c876
5ebc627
ff4c876
5ebc627
 
ff4c876
5ebc627
 
ff4c876
5ebc627
 
ff4c876
5ebc627
 
ff4c876
5ebc627
 
ff4c876
 
 
5ebc627
ff4c876
 
5ebc627
ff4c876
5ebc627
ff4c876
 
 
4305b0a
 
 
69f6ed5
4305b0a
 
 
 
 
 
 
 
69f6ed5
4305b0a
 
69f6ed5
 
 
 
 
 
 
 
 
 
 
 
4305b0a
9d7d2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4305b0a
d9837be
69f6ed5
d9837be
4305b0a
 
 
 
ff4c876
 
4305b0a
69f6ed5
4305b0a
 
6fba44c
4305b0a
 
 
 
 
5ebc627
4305b0a
 
ff4c876
4305b0a
 
 
 
 
 
 
 
5ebc627
4305b0a
 
 
 
 
 
 
69f6ed5
5ebc627
 
 
 
 
 
4305b0a
 
 
69f6ed5
4305b0a
ff4c876
 
 
69f6ed5
4305b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
 
 
4305b0a
ff4c876
5ebc627
ff4c876
5ebc627
 
 
 
 
 
 
 
 
ff4c876
5ebc627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff4c876
a5f4f6d
4305b0a
5ebc627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4305b0a
5ebc627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
 
 
4305b0a
ff4c876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e33b088
ff4c876
e33b088
ff4c876
e33b088
ff4c876
e33b088
 
 
ff4c876
e33b088
ff4c876
e33b088
ff4c876
e33b088
ff4c876
e33b088
 
 
ff4c876
e33b088
ff4c876
e33b088
ff4c876
e33b088
ff4c876
e33b088
 
 
ff4c876
e33b088
ff4c876
e33b088
ff4c876
e33b088
ff4c876
e33b088
 
 
ff4c876
e33b088
ff4c876
e33b088
ff4c876
e33b088
ff4c876
e33b088
 
 
ff4c876
e33b088
ff4c876
e33b088
ff4c876
e33b088
ff4c876
e33b088
 
 
 
 
ff4c876
e33b088
ff4c876
 
 
 
 
 
 
 
 
 
4305b0a
69f6ed5
 
4305b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
 
 
 
4305b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
 
 
 
4305b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
 
 
 
4305b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
 
 
 
4305b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
 
 
 
4305b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
 
 
 
4305b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
d9837be
4305b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
 
 
 
4305b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
4305b0a
 
69f6ed5
ff4c876
 
4305b0a
40b5db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4305b0a
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
 
 
4305b0a
69f6ed5
4305b0a
69f6ed5
4305b0a
 
 
69f6ed5
4305b0a
 
69f6ed5
4305b0a
 
69f6ed5
 
 
4305b0a
 
69f6ed5
 
 
 
 
 
4305b0a
69f6ed5
4305b0a
69f6ed5
4305b0a
69f6ed5
4305b0a
 
69f6ed5
40b5db7
 
 
69f6ed5
4305b0a
 
40b5db7
 
 
 
4305b0a
 
69f6ed5
4305b0a
3acc06b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
 
 
 
 
 
4305b0a
69f6ed5
 
 
ff4c876
 
 
 
40b5db7
ff4c876
 
 
 
 
 
 
40b5db7
 
 
 
 
 
ff4c876
 
 
 
 
40b5db7
 
 
ff4c876
 
 
40b5db7
 
 
ff4c876
40b5db7
 
 
 
 
 
 
 
ff4c876
 
 
 
 
40b5db7
 
 
 
ff4c876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
4305b0a
 
 
 
69f6ed5
4305b0a
 
 
69f6ed5
4305b0a
 
69f6ed5
4305b0a
 
 
 
 
69f6ed5
4305b0a
 
 
 
 
 
 
 
69f6ed5
4305b0a
 
 
 
69f6ed5
4305b0a
69f6ed5
 
 
 
 
4305b0a
69f6ed5
 
 
 
 
4305b0a
69f6ed5
 
 
 
 
4305b0a
69f6ed5
 
 
 
 
4305b0a
69f6ed5
 
 
 
4305b0a
 
69f6ed5
 
 
 
 
4305b0a
69f6ed5
 
 
 
 
 
 
4305b0a
69f6ed5
4305b0a
 
69f6ed5
 
 
 
 
4305b0a
 
ff4c876
 
69f6ed5
 
 
 
 
 
 
ff4c876
 
 
5ebc627
ff4c876
69f6ed5
 
 
 
 
 
5ebc627
ff4c876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4305b0a
 
 
 
 
 
 
ff4c876
69f6ed5
 
 
4305b0a
 
69f6ed5
ff4c876
 
 
 
 
 
 
 
 
 
 
4305b0a
ff4c876
 
4305b0a
 
ff4c876
 
5ebc627
 
 
 
 
 
ff4c876
5ebc627
 
 
 
 
69f6ed5
4305b0a
ff4c876
 
 
 
5ebc627
 
 
4305b0a
 
ff4c876
 
5ebc627
 
 
4305b0a
 
ff4c876
 
4305b0a
ff4c876
5ebc627
 
 
69f6ed5
4305b0a
ff4c876
 
5ebc627
 
 
69f6ed5
ff4c876
 
 
 
 
 
4305b0a
 
ff4c876
69f6ed5
5ebc627
 
69f6ed5
4305b0a
 
ff4c876
 
 
4305b0a
 
 
 
 
 
 
 
 
69f6ed5
4305b0a
ff4c876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ebc627
 
ff4c876
5ebc627
 
 
 
9d7d2e0
 
 
 
 
 
5ebc627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff4c876
 
 
 
5ebc627
ff4c876
 
 
 
5ebc627
ff4c876
 
 
 
 
 
 
 
 
 
5ebc627
ff4c876
 
 
 
5ebc627
 
 
 
ff4c876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ebc627
ff4c876
 
 
5ebc627
 
 
 
 
 
 
ff4c876
 
 
 
 
 
 
 
 
 
4305b0a
69f6ed5
 
 
4305b0a
 
69f6ed5
4305b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
5ebc627
4305b0a
 
69f6ed5
 
 
4305b0a
 
 
 
 
 
40b5db7
 
 
 
4305b0a
5ebc627
40b5db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
40b5db7
4305b0a
40b5db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4305b0a
40b5db7
69f6ed5
40b5db7
4305b0a
 
69f6ed5
 
 
 
 
 
4305b0a
ff4c876
4305b0a
 
 
 
 
 
 
 
 
 
ff4c876
 
 
 
 
 
 
 
 
 
69f6ed5
 
 
 
ff4c876
69f6ed5
 
 
 
 
4305b0a
 
69f6ed5
4305b0a
 
ff4c876
 
69f6ed5
 
 
 
ff4c876
69f6ed5
 
4305b0a
ff4c876
 
69f6ed5
 
 
 
 
 
 
ff4c876
 
 
4305b0a
 
69f6ed5
 
 
4305b0a
 
ff4c876
69f6ed5
 
 
 
 
 
 
4305b0a
69f6ed5
 
 
 
 
4305b0a
69f6ed5
 
 
 
ff4c876
69f6ed5
 
 
 
 
4305b0a
 
 
69f6ed5
 
 
4305b0a
ff4c876
69f6ed5
ff4c876
4305b0a
 
ff4c876
 
 
 
4305b0a
69f6ed5
ff4c876
69f6ed5
4305b0a
ff4c876
4305b0a
 
69f6ed5
 
 
4305b0a
 
69f6ed5
 
ff4c876
69f6ed5
 
 
 
ff4c876
 
4305b0a
69f6ed5
4305b0a
69f6ed5
 
 
4305b0a
 
69f6ed5
4305b0a
 
ff4c876
 
 
69f6ed5
 
 
4305b0a
 
 
69f6ed5
 
 
 
4305b0a
 
69f6ed5
 
 
4305b0a
 
 
 
69f6ed5
 
 
4305b0a
 
69f6ed5
 
 
 
4305b0a
 
 
 
 
 
 
ff4c876
4305b0a
69f6ed5
4305b0a
69f6ed5
 
4305b0a
 
 
ff4c876
4305b0a
69f6ed5
4305b0a
69f6ed5
 
 
 
 
 
 
 
4305b0a
 
69f6ed5
4305b0a
 
 
 
 
69f6ed5
4305b0a
 
 
69f6ed5
 
 
 
4305b0a
 
69f6ed5
4305b0a
69f6ed5
 
 
 
4305b0a
 
 
 
 
 
 
69f6ed5
4305b0a
69f6ed5
4305b0a
69f6ed5
 
 
 
 
4305b0a
 
69f6ed5
 
 
 
 
4305b0a
69f6ed5
 
 
 
4305b0a
69f6ed5
 
 
 
4305b0a
69f6ed5
 
 
 
4305b0a
 
 
 
69f6ed5
 
 
4305b0a
 
 
69f6ed5
 
4305b0a
 
69f6ed5
4305b0a
 
 
 
 
 
 
69f6ed5
 
 
 
 
4305b0a
 
69f6ed5
 
 
 
4305b0a
 
 
 
69f6ed5
4305b0a
69f6ed5
 
 
 
 
 
4305b0a
 
69f6ed5
4305b0a
 
 
69f6ed5
4305b0a
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
4305b0a
 
 
 
 
69f6ed5
4305b0a
69f6ed5
5ebc627
 
 
 
69f6ed5
4305b0a
 
 
 
69f6ed5
4305b0a
69f6ed5
4305b0a
69f6ed5
 
 
4305b0a
 
69f6ed5
4305b0a
 
 
69f6ed5
4305b0a
 
 
 
 
 
 
69f6ed5
4305b0a
 
 
 
69f6ed5
4305b0a
 
 
 
 
40b5db7
4305b0a
 
 
 
69f6ed5
4305b0a
 
 
 
69f6ed5
 
4305b0a
69f6ed5
4305b0a
69f6ed5
 
 
 
4305b0a
 
5ebc627
 
 
69f6ed5
4305b0a
 
5ebc627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d7d2e0
 
 
 
 
 
 
5ebc627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4305b0a
69f6ed5
 
 
 
 
4305b0a
 
69f6ed5
4305b0a
 
 
 
69f6ed5
4305b0a
 
 
 
 
 
 
 
 
69f6ed5
4305b0a
 
 
 
 
 
 
 
 
 
 
 
 
69f6ed5
4305b0a
 
69f6ed5
4305b0a
69f6ed5
4305b0a
 
69f6ed5
4305b0a
 
 
69f6ed5
4305b0a
69f6ed5
 
 
6fba44c
e33b088
69f6ed5
4305b0a
69f6ed5
40b5db7
6fba44c
e33b088
69f6ed5
 
 
 
 
4305b0a
69f6ed5
4305b0a
 
 
69f6ed5
4305b0a
 
 
5ebc627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e33b088
5ebc627
 
 
 
 
e33b088
5ebc627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
"""
MAI Diagnostic Orchestrator (MAI-DxO)

This script provides a complete implementation of the "Sequential Diagnosis with Language Models"
paper, using the `swarms` framework. It simulates a virtual panel of physician-agents to perform
iterative medical diagnosis with cost-effectiveness optimization.

Based on the paper: "Sequential Diagnosis with Language Models"
(arXiv:2506.22405v1) by Nori et al.

Key Features:
- Virtual physician panel with specialized roles (Hypothesis, Test-Chooser, Challenger, Stewardship, Checklist)
- Multiple operational modes (instant, question_only, budgeted, no_budget, ensemble)
- Comprehensive cost tracking and budget management
- Clinical accuracy evaluation with 5-point Likert scale
- Gatekeeper system for realistic clinical information disclosure
- Ensemble methods for improved diagnostic accuracy

Example Usage:
    # Standard MAI-DxO usage
    orchestrator = MaiDxOrchestrator(model_name="gpt-4o")
    result = orchestrator.run(initial_case_info, full_case_details, ground_truth)

    # Budget-constrained variant
    budgeted_orchestrator = MaiDxOrchestrator.create_variant("budgeted", budget=5000)

    # Ensemble approach
    ensemble_result = orchestrator.run_ensemble(initial_case_info, full_case_details, ground_truth)
"""

# Enable debug mode if environment variable is set
import os
import json
import sys
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Any, Dict, List, Union, Literal, Optional

from loguru import logger
from pydantic import BaseModel, Field, ValidationError
from swarms import Agent, Conversation
from dotenv import load_dotenv

load_dotenv()

# Configure Loguru with beautiful formatting and features
logger.remove()  # Remove default handler

# Console handler with beautiful colors
logger.add(
    sys.stdout,
    level="INFO",
    format="<green>{time:YYYY-MM-DD HH:mm:ss}</green> | <level>{level: <8}</level> | <cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>",
    colorize=True,
)


if os.getenv("MAIDX_DEBUG", "").lower() in ("1", "true", "yes"):
    logger.add(
        "logs/maidx_debug_{time:YYYY-MM-DD}.log",
        level="DEBUG",
        format="{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {name}:{function}:{line} - {message}",
        rotation="1 day",
        retention="3 days",
    )
    logger.info(
        "πŸ› Debug logging enabled - logs will be written to logs/ directory"
    )

# File handler for persistent logging (optional - uncomment if needed)
# logger.add(
#     "logs/mai_dxo_{time:YYYY-MM-DD}.log",
#     rotation="1 day",
#     retention="7 days",
#     level="DEBUG",
#     format="{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {name}:{function}:{line} - {message}",
#     compression="zip"
# )

# --- Data Structures and Enums ---


class AgentRole(Enum):
    """Enumeration of roles for the virtual physician panel."""

    HYPOTHESIS = "Dr. Hypothesis"
    TEST_CHOOSER = "Dr. Test-Chooser"
    CHALLENGER = "Dr. Challenger"
    STEWARDSHIP = "Dr. Stewardship"
    CHECKLIST = "Dr. Checklist"
    CONSENSUS = "Consensus Coordinator"
    GATEKEEPER = "Gatekeeper"
    JUDGE = "Judge"


@dataclass
class CaseState:
    """Structured state management for diagnostic process - addresses Category 2.1"""
    initial_vignette: str
    evidence_log: List[str] = field(default_factory=list)
    differential_diagnosis: Dict[str, float] = field(default_factory=dict)
    tests_performed: List[str] = field(default_factory=list)
    questions_asked: List[str] = field(default_factory=list)
    cumulative_cost: int = 0
    iteration: int = 0
    last_actions: List['Action'] = field(default_factory=list)  # For stagnation detection
    
    def add_evidence(self, evidence: str):
        """Add new evidence to the case"""
        self.evidence_log.append(f"[Turn {self.iteration}] {evidence}")
    
    def update_differential(self, diagnosis_dict: Dict[str, float]):
        """Update differential diagnosis probabilities"""
        self.differential_diagnosis.update(diagnosis_dict)
    
    def add_test(self, test_name: str):
        """Record a test that was performed"""
        self.tests_performed.append(test_name)
    
    def add_question(self, question: str):
        """Record a question that was asked"""
        self.questions_asked.append(question)
        
    def is_stagnating(self, new_action: 'Action') -> bool:
        """Detect if the system is stuck in a loop - addresses Category 1.2"""
        if len(self.last_actions) < 2:
            return False
            
        # Check if the new action is identical to recent ones
        for last_action in self.last_actions[-2:]:
            if (last_action.action_type == new_action.action_type and 
                last_action.content == new_action.content):
                return True
        return False
    
    def add_action(self, action: 'Action'):
        """Add action to history and maintain sliding window"""
        self.last_actions.append(action)
        if len(self.last_actions) > 3:  # Keep only last 3 actions
            self.last_actions.pop(0)
    
    def get_max_confidence(self) -> float:
        """Get the maximum confidence from differential diagnosis"""
        if not self.differential_diagnosis:
            return 0.0
        return max(self.differential_diagnosis.values())
    
    def get_leading_diagnosis(self) -> str:
        """Get the diagnosis with highest confidence"""
        if not self.differential_diagnosis:
            return "No diagnosis formulated"
        return max(self.differential_diagnosis.items(), key=lambda x: x[1])[0]
    
    def summarize_evidence(self) -> str:
        """Create a concise summary of evidence for token efficiency"""
        if len(self.evidence_log) <= 5:
            return "\n".join(self.evidence_log)
        
        # Keep first 2 and last 3 entries, summarize middle
        summary_parts = []
        summary_parts.extend(self.evidence_log[:2])
        
        if len(self.evidence_log) > 5:
            middle_count = len(self.evidence_log) - 5
            summary_parts.append(f"[... {middle_count} additional findings ...]")
        
        summary_parts.extend(self.evidence_log[-3:])
        return "\n".join(summary_parts)


@dataclass
class DeliberationState:
    """Structured state for panel deliberation - addresses Category 1.1"""
    hypothesis_analysis: str = ""
    test_chooser_analysis: str = ""
    challenger_analysis: str = ""
    stewardship_analysis: str = ""
    checklist_analysis: str = ""
    situational_context: str = ""
    stagnation_detected: bool = False
    retry_count: int = 0
    
    def to_consensus_prompt(self) -> str:
        """Generate a structured prompt for the consensus coordinator - no truncation, let agent self-regulate"""
        
        prompt = f"""
You are the Consensus Coordinator. Here is the panel's analysis:

**Differential Diagnosis (Dr. Hypothesis):**
{self.hypothesis_analysis or 'Not yet formulated'}

**Test Recommendations (Dr. Test-Chooser):**
{self.test_chooser_analysis or 'None provided'}

**Critical Challenges (Dr. Challenger):**
{self.challenger_analysis or 'None identified'}

**Cost Assessment (Dr. Stewardship):**
{self.stewardship_analysis or 'Not evaluated'}

**Quality Control (Dr. Checklist):**
{self.checklist_analysis or 'No issues noted'}
"""
        
        if self.stagnation_detected:
            prompt += "\n**STAGNATION DETECTED** - The panel is repeating actions. You MUST make a decisive choice or provide final diagnosis."
        
        if self.situational_context:
            prompt += f"\n**Situational Context:** {self.situational_context}"
        
        prompt += "\n\nBased on this comprehensive panel input, use the make_consensus_decision function to provide your structured action."
        return prompt


@dataclass
class DiagnosisResult:
    """Stores the final result of a diagnostic session."""

    final_diagnosis: str
    ground_truth: str
    accuracy_score: float
    accuracy_reasoning: str
    total_cost: int
    iterations: int
    conversation_history: str


class Action(BaseModel):
    """Pydantic model for a structured action decided by the consensus agent."""

    action_type: Literal["ask", "test", "diagnose"] = Field(
        ..., description="The type of action to perform."
    )
    content: Union[str, List[str]] = Field(
        ...,
        description="The content of the action (question, test name, or diagnosis).",
    )
    reasoning: str = Field(
        ..., description="The reasoning behind choosing this action."
    )


# ------------------------------------------------------------------
# Strongly-typed models for function-calling arguments (type safety)
# ------------------------------------------------------------------


class ConsensusArguments(BaseModel):
    """Typed model for the `make_consensus_decision` function call."""

    action_type: Literal["ask", "test", "diagnose"]
    content: Union[str, List[str]]
    reasoning: str


class DifferentialDiagnosisItem(BaseModel):
    """Single differential diagnosis item returned by Dr. Hypothesis."""

    diagnosis: str
    probability: float
    rationale: str


class HypothesisArguments(BaseModel):
    """Typed model for the `update_differential_diagnosis` function call."""

    summary: str
    differential_diagnoses: List[DifferentialDiagnosisItem]
    key_evidence: str
    contradictory_evidence: Optional[str] = None


# --- Main Orchestrator Class ---


class MaiDxOrchestrator:
    """
    Implements the MAI Diagnostic Orchestrator (MAI-DxO) framework.
    This class orchestrates a virtual panel of AI agents to perform sequential medical diagnosis,
    evaluates the final diagnosis, and tracks costs.
    
    Enhanced with structured deliberation and proper state management as per research paper.
    """

    def __init__(
        self,
        model_name: str = "gpt-4o-mini",  # Fixed: Use valid GPT-4 Turbo model name
        max_iterations: int = 10,
        initial_budget: int = 10000,
        mode: str = "no_budget",  # "instant", "question_only", "budgeted", "no_budget", "ensemble"
        physician_visit_cost: int = 300,
        enable_budget_tracking: bool = False,
        request_delay: float = 8.0,  # seconds to wait between model calls to mitigate rate-limits
    ):
        """
        Initializes the MAI-DxO system with improved architecture.

        Args:
            model_name (str): The language model to be used by all agents.
            max_iterations (int): The maximum number of diagnostic loops.
            initial_budget (int): The starting budget for diagnostic tests.
            mode (str): The operational mode of MAI-DxO.
            physician_visit_cost (int): Cost per physician visit.
            enable_budget_tracking (bool): Whether to enable budget tracking.
            request_delay (float): Seconds to wait between model calls to mitigate rate-limits.
        """
        self.model_name = model_name
        self.max_iterations = max_iterations
        self.initial_budget = initial_budget
        self.mode = mode
        self.physician_visit_cost = physician_visit_cost
        self.enable_budget_tracking = enable_budget_tracking

        # Throttle settings to avoid OpenAI TPM rate-limits
        self.request_delay = max(request_delay, 0)
        
        # Token management
        self.max_total_tokens_per_request = 25000  # Safety margin below 30k limit

        self.cumulative_cost = 0
        self.differential_diagnosis = "Not yet formulated."
        self.conversation = Conversation(
            time_enabled=True, autosave=False, save_enabled=False
        )
        
        # Initialize case state for structured state management
        self.case_state = None

        # Enhanced cost model based on the paper's methodology
        self.test_cost_db = {
            "default": 150,
            "cbc": 50,
            "complete blood count": 50,
            "fbc": 50,
            "chest x-ray": 200,
            "chest xray": 200,
            "mri": 1500,
            "mri brain": 1800,
            "mri neck": 1600,
            "ct scan": 1200,
            "ct chest": 1300,
            "ct abdomen": 1400,
            "biopsy": 800,
            "core biopsy": 900,
            "immunohistochemistry": 400,
            "fish test": 500,
            "fish": 500,
            "ultrasound": 300,
            "ecg": 100,
            "ekg": 100,
            "blood glucose": 30,
            "liver function tests": 80,
            "renal function": 70,
            "toxic alcohol panel": 200,
            "urinalysis": 40,
            "culture": 150,
            "pathology": 600,
        }

        self._init_agents()
        logger.info(
            f"πŸ₯ MAI Diagnostic Orchestrator initialized successfully in '{mode}' mode with budget ${initial_budget:,}"
        )

    def _get_agent_max_tokens(self, role: AgentRole) -> int:
        """Get max_tokens for each agent based on their role - agents will self-regulate based on token guidance"""
        token_limits = {
            # Reasonable limits - agents will adjust their verbosity based on token guidance
            AgentRole.HYPOTHESIS: 1200,   # Function calling keeps this structured, but allow room for quality
            AgentRole.TEST_CHOOSER: 800,  # Need space for test rationale
            AgentRole.CHALLENGER: 800,    # Need space for critical analysis
            AgentRole.STEWARDSHIP: 600,
            AgentRole.CHECKLIST: 400,
            AgentRole.CONSENSUS: 500,     # Function calling is efficient
            AgentRole.GATEKEEPER: 1000,  # Needs to provide detailed clinical findings
            AgentRole.JUDGE: 700,
        }
        return token_limits.get(role, 600)
    
    def _estimate_tokens(self, text: str) -> int:
        """Rough token estimation (1 token β‰ˆ 4 characters for English)"""
        return len(text) // 4
    
    def _generate_token_guidance(self, input_tokens: int, max_output_tokens: int, total_tokens: int, agent_role: AgentRole) -> str:
        """Generate dynamic token guidance for agents to self-regulate their responses"""
        
        # Determine urgency level based on token usage
        if total_tokens > self.max_total_tokens_per_request:
            urgency = "CRITICAL"
            strategy = "Be extremely concise. Prioritize only the most essential information."
        elif total_tokens > self.max_total_tokens_per_request * 0.8:
            urgency = "HIGH"
            strategy = "Be concise and focus on key points. Avoid elaborate explanations."
        elif total_tokens > self.max_total_tokens_per_request * 0.6:
            urgency = "MODERATE"
            strategy = "Be reasonably concise while maintaining necessary detail."
        else:
            urgency = "LOW"
            strategy = "You can provide detailed analysis within your allocated tokens."
        
        # Role-specific guidance
        role_specific_guidance = {
            AgentRole.HYPOTHESIS: "Focus on top 2-3 diagnoses with probabilities. Prioritize summary over detailed pathophysiology.",
            AgentRole.TEST_CHOOSER: "Recommend 1-2 highest-yield tests. Focus on which hypotheses they'll help differentiate.",
            AgentRole.CHALLENGER: "Identify 1-2 most critical biases or alternative diagnoses. Be direct and specific.",
            AgentRole.STEWARDSHIP: "Focus on cost-effectiveness assessment. Recommend cheaper alternatives where applicable.",
            AgentRole.CHECKLIST: "Provide concise quality check. Flag critical issues only.",
            AgentRole.CONSENSUS: "Function calling enforces structure. Focus on clear reasoning.",
            AgentRole.GATEKEEPER: "Provide specific clinical findings. Be factual and complete but not verbose.",
            AgentRole.JUDGE: "Provide score and focused justification. Be systematic but concise."
        }.get(agent_role, "Be concise and focused.")
        
        guidance = f"""
[TOKEN MANAGEMENT - {urgency} PRIORITY]
Input: {input_tokens} tokens | Your Output Limit: {max_output_tokens} tokens | Total: {total_tokens} tokens
Strategy: {strategy}
Role Focus: {role_specific_guidance}

IMPORTANT: Adjust your response length and detail level based on this guidance. Prioritize the most critical information for your role.
"""
        
        return guidance

    def _init_agents(self) -> None:
        """Initializes all required agents with their specific roles and prompts."""
        
        # Define the structured output tool for consensus decisions
        consensus_tool = {
            "type": "function",
            "function": {
                "name": "make_consensus_decision",
                "description": "Make a structured consensus decision for the next diagnostic action",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "action_type": {
                            "type": "string",
                            "enum": ["ask", "test", "diagnose"],
                            "description": "The type of action to perform"
                        },
                        "content": {
                            "type": "string",
                            "description": "The specific content of the action (question, test name, or diagnosis)"
                        },
                        "reasoning": {
                            "type": "string",
                            "description": "The detailed reasoning behind this decision, synthesizing panel input"
                        }
                    },
                    "required": ["action_type", "content", "reasoning"]
                }
            }
        }
        
        # Define structured output tool for differential diagnosis
        hypothesis_tool = {
            "type": "function",
            "function": {
                "name": "update_differential_diagnosis",
                "description": "Update the differential diagnosis with structured probabilities and reasoning",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "summary": {
                            "type": "string",
                            "description": "One-sentence summary of primary diagnostic conclusion and confidence"
                        },
                        "differential_diagnoses": {
                            "type": "array",
                            "items": {
                                "type": "object",
                                "properties": {
                                    "diagnosis": {"type": "string", "description": "The diagnosis name"},
                                    "probability": {"type": "number", "minimum": 0, "maximum": 1, "description": "Probability as decimal (0.0-1.0)"},
                                    "rationale": {"type": "string", "description": "Brief rationale for this diagnosis"}
                                },
                                "required": ["diagnosis", "probability", "rationale"]
                            },
                            "minItems": 2,
                            "maxItems": 5,
                            "description": "Top 2-5 differential diagnoses with probabilities"
                        },
                        "key_evidence": {
                            "type": "string",
                            "description": "Key supporting evidence for leading hypotheses"
                        },
                        "contradictory_evidence": {
                            "type": "string", 
                            "description": "Critical contradictory evidence that must be addressed"
                        }
                    },
                    "required": ["summary", "differential_diagnoses", "key_evidence"]
                }
            }
        }
        
        self.agents = {}
        for role in AgentRole:
            if role == AgentRole.CONSENSUS:
                # Use function calling for consensus agent to ensure structured output
                self.agents[role] = Agent(
                    agent_name=role.value,
                    system_prompt=self._get_prompt_for_role(role),
                    model_name=self.model_name,
                    max_loops=1,
                    tools_list_dictionary=[consensus_tool],  # swarms expects tools_list_dictionary
                    tool_choice="auto",  # Let the model choose to use the tool
                    print_on=True,
                    max_tokens=self._get_agent_max_tokens(role),
                )
            elif role == AgentRole.HYPOTHESIS:
                # Use function calling for hypothesis agent to ensure structured differential
                self.agents[role] = Agent(
                    agent_name=role.value,
                    system_prompt=self._get_prompt_for_role(role),
                    model_name=self.model_name,
                    max_loops=1,
                    tools_list_dictionary=[hypothesis_tool],
                    tool_choice="auto",
                    print_on=True,
                    max_tokens=self._get_agent_max_tokens(role),
                )
            else:
                # Regular agents without function calling
                self.agents[role] = Agent(
                    agent_name=role.value,
                    system_prompt=self._get_prompt_for_role(role),
                    model_name=self.model_name,
                    max_loops=1,
                    output_type="str",
                    print_on=True,
                    max_tokens=self._get_agent_max_tokens(role),
                )
        
        logger.info(
            f"πŸ‘₯ {len(self.agents)} virtual physician agents initialized and ready for consultation"
        )

    def _get_dynamic_context(self, role: AgentRole, case_state: CaseState) -> str:
        """Generate dynamic context for agents based on current situation - addresses Category 4.2"""
        remaining_budget = self.initial_budget - case_state.cumulative_cost
        
        # Calculate confidence from differential diagnosis
        max_confidence = max(case_state.differential_diagnosis.values()) if case_state.differential_diagnosis else 0
        
        context = ""
        
        if role == AgentRole.STEWARDSHIP and remaining_budget < 1000:
            context = f"""
**SITUATIONAL CONTEXT: URGENT**
The remaining budget is critically low (${remaining_budget}). All recommendations must be focused on maximum cost-effectiveness. Veto any non-essential or high-cost tests.
"""
        
        elif role == AgentRole.HYPOTHESIS and max_confidence > 0.75:
            context = f"""
**SITUATIONAL CONTEXT: FINAL STAGES**
The panel is converging on a diagnosis (current max confidence: {max_confidence:.0%}). Your primary role now is to confirm the leading hypothesis or state what single piece of evidence is needed to reach >85% confidence.
"""
        
        elif role == AgentRole.CONSENSUS and case_state.iteration > 5:
            context = f"""
**SITUATIONAL CONTEXT: EXTENDED CASE**
This case has gone through {case_state.iteration} iterations. Focus on decisive actions that will lead to a definitive diagnosis rather than additional exploratory steps.
"""
        
        return context

    def _get_prompt_for_role(self, role: AgentRole, case_state: CaseState = None) -> str:
        """Returns the system prompt for a given agent role with dynamic context."""
        
        # Add dynamic context if case_state is provided
        dynamic_context = ""
        if case_state:
            dynamic_context = self._get_dynamic_context(role, case_state)
        
        # --- Compact, token-efficient prompts ---
        base_prompts = {
            AgentRole.HYPOTHESIS: f"""{dynamic_context}

MANDATE: Keep an up-to-date, probability-ranked differential.

DIRECTIVES:
1. Return 2-5 diagnoses (prob 0-1) with 1-line rationale.
2. List key supporting & contradictory evidence.

You MUST call update_differential_diagnosis().""",

            AgentRole.TEST_CHOOSER: f"""{dynamic_context}

MANDATE: Pick the highest-yield tests.

DIRECTIVES:
1. Suggest ≀3 tests that best separate current diagnoses.
2. Note target hypothesis & info-gain vs cost.

Limit: focus on top 1-2 critical points.""",

            AgentRole.CHALLENGER: f"""{dynamic_context}

MANDATE: Expose the biggest flaw or bias.

DIRECTIVES:
1. Name the key bias/contradiction.
2. Propose an alternate diagnosis or falsifying test.

Reply concisely (top 2 issues).""",

            AgentRole.STEWARDSHIP: f"""{dynamic_context}

MANDATE: Ensure cost-effective care.

DIRECTIVES:
1. Rate proposed tests (High/Mod/Low value).
2. Suggest cheaper equivalents where possible.

Be brief; highlight savings.""",

            AgentRole.CHECKLIST: f"""{dynamic_context}

MANDATE: Guarantee quality & consistency.

DIRECTIVES:
1. Flag invalid tests or logic gaps.
2. Note safety concerns.

Return bullet list of critical items.""",

            AgentRole.CONSENSUS: f"""{dynamic_context}

MANDATE: Decide the next action.

DECISION RULES:
1. If confidence >85% & no major objection β†’ diagnose.
2. Else address Challenger's top concern.
3. Else order highest info-gain (cheapest) test.
4. Else ask the most informative question.

You MUST call make_consensus_decision().""",
        }
        
        # Use existing prompts for other roles, just add dynamic context
        if role not in base_prompts:
            return dynamic_context + self._get_original_prompt_for_role(role)
        
        return base_prompts[role]

    def _get_original_prompt_for_role(self, role: AgentRole) -> str:
        """Returns original system prompts for roles not yet updated"""
        prompts = {
            AgentRole.HYPOTHESIS: (
                """
            You are Dr. Hypothesis, a specialist in maintaining differential diagnoses. Your role is critical to the diagnostic process.

            CORE RESPONSIBILITIES:
            - Maintain a probability-ranked differential diagnosis with the top 3 most likely conditions
            - Update probabilities using Bayesian reasoning after each new finding
            - Consider both common and rare diseases appropriate to the clinical context
            - Explicitly track how new evidence changes your diagnostic thinking

            APPROACH:
            1. Start with the most likely diagnoses based on presenting symptoms
            2. For each new piece of evidence, consider:
               - How it supports or refutes each hypothesis
               - Whether it suggests new diagnoses to consider
               - How it changes the relative probabilities
            3. Always explain your Bayesian reasoning clearly

            OUTPUT FORMAT:
            Provide your updated differential diagnosis with:
            - Top 3 diagnoses with probability estimates (percentages)
            - Brief rationale for each
            - Key evidence supporting each hypothesis
            - Evidence that contradicts or challenges each hypothesis

            Remember: Your differential drives the entire diagnostic process. Be thorough, evidence-based, and adaptive.
            """
            ),
            AgentRole.TEST_CHOOSER: (
                """
            You are Dr. Test-Chooser, a specialist in diagnostic test selection and information theory.

            CORE RESPONSIBILITIES:
            - Select up to 3 diagnostic tests per round that maximally discriminate between leading hypotheses
            - Optimize for information value, not just clinical reasonableness
            - Consider test characteristics: sensitivity, specificity, positive/negative predictive values
            - Balance diagnostic yield with patient burden and resource utilization

            SELECTION CRITERIA:
            1. Information Value: How much will this test change diagnostic probabilities?
            2. Discriminatory Power: How well does it distinguish between competing hypotheses?
            3. Clinical Impact: Will the result meaningfully alter management?
            4. Sequential Logic: What should we establish first before ordering more complex tests?

            APPROACH:
            - For each proposed test, explicitly state which hypotheses it will help confirm or exclude
            - Consider both positive and negative results and their implications
            - Think about test sequences (e.g., basic labs before advanced imaging)
            - Avoid redundant tests that won't add new information

            OUTPUT FORMAT:
            For each recommended test:
            - Test name (be specific)
            - Primary hypotheses it will help evaluate
            - Expected information gain
            - How results will change management decisions

            Focus on tests that will most efficiently narrow the differential diagnosis.
            """
            ),
            AgentRole.CHALLENGER: (
                """
            You are Dr. Challenger, the critical thinking specialist and devil's advocate.

            CORE RESPONSIBILITIES:
            - Identify and challenge cognitive biases in the diagnostic process
            - Highlight contradictory evidence that might be overlooked
            - Propose alternative hypotheses and falsifying tests
            - Guard against premature diagnostic closure

            COGNITIVE BIASES TO WATCH FOR:
            1. Anchoring: Over-reliance on initial impressions
            2. Confirmation bias: Seeking only supporting evidence
            3. Availability bias: Overestimating probability of recently seen conditions
            4. Representativeness: Ignoring base rates and prevalence
            5. Search satisficing: Stopping at "good enough" explanations

            YOUR APPROACH:
            - Ask "What else could this be?" and "What doesn't fit?"
            - Challenge assumptions and look for alternative explanations
            - Propose tests that could disprove the leading hypothesis
            - Consider rare diseases when common ones don't fully explain the picture
            - Advocate for considering multiple conditions simultaneously

            OUTPUT FORMAT:
            - Specific biases you've identified in the current reasoning
            - Evidence that contradicts the leading hypotheses
            - Alternative diagnoses to consider
            - Tests that could falsify current assumptions
            - Red flags or concerning patterns that need attention

            Be constructively critical - your role is to strengthen diagnostic accuracy through rigorous challenge.
            """
            ),
            AgentRole.STEWARDSHIP: (
                """
            You are Dr. Stewardship, the resource optimization and cost-effectiveness specialist.

            CORE RESPONSIBILITIES:
            - Enforce cost-conscious, high-value care
            - Advocate for cheaper alternatives when diagnostically equivalent
            - Challenge low-yield, expensive tests
            - Balance diagnostic thoroughness with resource stewardship

            COST-VALUE FRAMEWORK:
            1. High-Value Tests: Low cost, high diagnostic yield, changes management
            2. Moderate-Value Tests: Moderate cost, specific indication, incremental value
            3. Low-Value Tests: High cost, low yield, minimal impact on decisions
            4. No-Value Tests: Any cost, no diagnostic value, ordered out of habit

            ALTERNATIVE STRATEGIES:
            - Could patient history/physical exam provide this information?
            - Is there a less expensive test with similar diagnostic value?
            - Can we use a staged approach (cheap test first, expensive if needed)?
            - Does the test result actually change management?

            YOUR APPROACH:
            - Review all proposed tests for necessity and value
            - Suggest cost-effective alternatives
            - Question tests that don't clearly advance diagnosis
            - Advocate for asking questions before ordering expensive tests
            - Consider the cumulative cost burden

            OUTPUT FORMAT:
            - Assessment of proposed tests (high/moderate/low/no value)
            - Specific cost-effective alternatives
            - Questions that might obviate need for testing
            - Recommended modifications to testing strategy
            - Cumulative cost considerations

            Your goal: Maximum diagnostic accuracy at minimum necessary cost.
            """
            ),
            AgentRole.CHECKLIST: (
                """
            You are Dr. Checklist, the quality assurance and consistency specialist.

            CORE RESPONSIBILITIES:
            - Perform silent quality control on all panel deliberations
            - Ensure test names are valid and properly specified
            - Check internal consistency of reasoning across panel members
            - Flag logical errors or contradictions in the diagnostic approach

            QUALITY CHECKS:
            1. Test Validity: Are proposed tests real and properly named?
            2. Logical Consistency: Do the recommendations align with the differential?
            3. Evidence Integration: Are all findings being considered appropriately?
            4. Process Adherence: Is the panel following proper diagnostic methodology?
            5. Safety Checks: Are any critical possibilities being overlooked?

            SPECIFIC VALIDATIONS:
            - Test names match standard medical terminology
            - Proposed tests are appropriate for the clinical scenario
            - No contradictions between different panel members' reasoning
            - All significant findings are being addressed
            - No gaps in the diagnostic logic

            OUTPUT FORMAT:
            - Brief validation summary (βœ“ Clear / ⚠ Issues noted)
            - Any test name corrections needed
            - Logical inconsistencies identified
            - Missing considerations or gaps
            - Process improvement suggestions

            Keep your feedback concise but comprehensive. Flag any issues that could compromise diagnostic quality.
            """
            ),
            AgentRole.CONSENSUS: (
                """
            You are the Consensus Coordinator, responsible for synthesizing the virtual panel's expertise into a single, optimal decision.

            CORE RESPONSIBILITIES:
            - Integrate input from Dr. Hypothesis, Dr. Test-Chooser, Dr. Challenger, Dr. Stewardship, and Dr. Checklist
            - Decide on the single best next action: 'ask', 'test', or 'diagnose'
            - Balance competing priorities: accuracy, cost, efficiency, and thoroughness
            - Ensure the chosen action advances the diagnostic process optimally

            DECISION FRAMEWORK:
            1. DIAGNOSE: Choose when diagnostic certainty is sufficiently high (>85%) for the leading hypothesis
            2. TEST: Choose when tests will meaningfully discriminate between hypotheses
            3. ASK: Choose when history/exam questions could provide high-value information

            SYNTHESIS PROCESS:
            - Weight Dr. Hypothesis's confidence level and differential
            - Consider Dr. Test-Chooser's information value analysis
            - Incorporate Dr. Challenger's alternative perspectives
            - Respect Dr. Stewardship's cost-effectiveness concerns
            - Address any quality issues raised by Dr. Checklist

            OUTPUT REQUIREMENTS:
            Provide a JSON object with this exact structure:
            {
                "action_type": "ask" | "test" | "diagnose",
                "content": "specific question(s), test name(s), or final diagnosis",
                "reasoning": "clear justification synthesizing panel input"
            }

            For action_type "ask": content should be specific patient history or physical exam questions
            For action_type "test": content should be properly named diagnostic tests (up to 3)
            For action_type "diagnose": content should be the complete, specific final diagnosis

            Make the decision that best advances accurate, cost-effective diagnosis.
            """
            ),
            AgentRole.GATEKEEPER: (
                """
            You are the Gatekeeper, the clinical information oracle with complete access to the patient case file.

            CORE RESPONSIBILITIES:
            - Provide objective, specific clinical findings when explicitly requested
            - Serve as the authoritative source for all patient information
            - Generate realistic synthetic findings for tests not in the original case
            - Maintain clinical realism while preventing information leakage

            RESPONSE PRINCIPLES:
            1. OBJECTIVITY: Provide only factual findings, never interpretations or impressions
            2. SPECIFICITY: Give precise, detailed results when tests are properly ordered
            3. REALISM: Ensure all responses reflect realistic clinical scenarios
            4. NO HINTS: Never provide diagnostic clues or suggestions
            5. CONSISTENCY: Maintain coherence across all provided information

            HANDLING REQUESTS:
            - Patient History Questions: Provide relevant history from case file or realistic details
            - Physical Exam: Give specific examination findings as would be documented
            - Diagnostic Tests: Provide exact results as specified or realistic synthetic values
            - Vague Requests: Politely ask for more specific queries
            - Invalid Requests: Explain why the request cannot be fulfilled

            SYNTHETIC FINDINGS GUIDELINES:
            When generating findings not in the original case:
            - Ensure consistency with established diagnosis and case details
            - Use realistic reference ranges and values
            - Maintain clinical plausibility
            - Avoid pathognomonic findings unless specifically diagnostic

            RESPONSE FORMAT:
            - Direct, clinical language
            - Specific measurements with reference ranges when applicable
            - Clear organization of findings
            - Professional medical terminology

            Your role is crucial: provide complete, accurate clinical information while maintaining the challenge of the diagnostic process.
            """
            ),
            AgentRole.JUDGE: (
                """
            You are the Judge, the diagnostic accuracy evaluation specialist.

            CORE RESPONSIBILITIES:
            - Evaluate candidate diagnoses against ground truth using a rigorous clinical rubric
            - Provide fair, consistent scoring based on clinical management implications
            - Consider diagnostic substance over terminology differences
            - Account for acceptable medical synonyms and equivalent formulations

            EVALUATION RUBRIC (5-point Likert scale):

            SCORE 5 (Perfect/Clinically Superior):
            - Clinically identical to reference diagnosis
            - May be more specific than reference (adding relevant detail)
            - No incorrect or unrelated additions
            - Treatment approach would be identical

            SCORE 4 (Mostly Correct - Minor Incompleteness):
            - Core disease correctly identified
            - Minor qualifier or component missing/mis-specified
            - Overall management largely unchanged
            - Clinically appropriate diagnosis

            SCORE 3 (Partially Correct - Major Error):
            - Correct general disease category
            - Major error in etiology, anatomic site, or critical specificity
            - Would significantly alter workup or prognosis
            - Partially correct but clinically concerning gaps

            SCORE 2 (Largely Incorrect):
            - Shares only superficial features with correct diagnosis
            - Wrong fundamental disease process
            - Would misdirect clinical workup
            - Partially contradicts case details

            SCORE 1 (Completely Incorrect):
            - No meaningful overlap with correct diagnosis
            - Wrong organ system or disease category
            - Would likely lead to harmful care
            - Completely inconsistent with clinical presentation

            EVALUATION PROCESS:
            1. Compare core disease entity
            2. Assess etiology/causative factors
            3. Evaluate anatomic specificity
            4. Consider diagnostic completeness
            5. Judge clinical management implications

            OUTPUT FORMAT:
            - Score (1-5) with clear label
            - Detailed justification referencing specific rubric criteria
            - Explanation of how diagnosis would affect clinical management
            - Note any acceptable medical synonyms or equivalent terminology

            Maintain high standards while recognizing legitimate diagnostic variability in medical practice.
            """
            ),
        }
        return prompts[role]

    def _parse_json_response(self, response: str, retry_count: int = 0) -> Dict[str, Any]:
        """Safely parses a JSON string with retry logic - addresses Category 3.2"""
        try:
            # Handle agent response wrapper - extract actual content
            if isinstance(response, dict):
                # Handle swarms Agent response format
                if 'role' in response and 'content' in response:
                    response = response['content']
                elif 'content' in response:
                    response = response['content']
                else:
                    # Try to extract any string value from dict
                    response = str(response)
            elif hasattr(response, 'content'):
                response = response.content
            elif not isinstance(response, str):
                # Convert to string if it's some other type
                response = str(response)

            # Extract the actual response content from the agent response
            if isinstance(response, str):
                # Handle markdown-formatted JSON
                if "```json" in response:
                    # Extract JSON content between ```json and ```
                    start_marker = "```json"
                    end_marker = "```"
                    start_idx = response.find(start_marker)
                    if start_idx != -1:
                        start_idx += len(start_marker)
                        end_idx = response.find(end_marker, start_idx)
                        if end_idx != -1:
                            json_content = response[
                                start_idx:end_idx
                            ].strip()
                            return json.loads(json_content)

                # Try to find JSON-like content in the response
                lines = response.split("\n")
                json_lines = []
                in_json = False
                brace_count = 0

                for line in lines:
                    stripped_line = line.strip()
                    if stripped_line.startswith("{") and not in_json:
                        in_json = True
                        json_lines = [line]  # Start fresh
                        brace_count = line.count("{") - line.count(
                            "}"
                        )
                    elif in_json:
                        json_lines.append(line)
                        brace_count += line.count("{") - line.count(
                            "}"
                        )
                        if (
                            brace_count <= 0
                        ):  # Balanced braces, end of JSON
                            break

                if json_lines and in_json:
                    json_content = "\n".join(json_lines)
                    return json.loads(json_content)

                # Try to extract JSON from text that might contain other content
                import re

                # Look for JSON pattern in the text - more comprehensive regex
                json_pattern = r'\{(?:[^{}]|(?:\{[^{}]*\}))*\}'
                matches = re.findall(json_pattern, response, re.DOTALL)

                for match in matches:
                    try:
                        parsed = json.loads(match)
                        # Validate that it has the expected action structure
                        if isinstance(parsed, dict) and 'action_type' in parsed:
                            return parsed
                    except json.JSONDecodeError:
                        continue

                # Direct parsing attempt as fallback
                try:
                    return json.loads(response)
                except json.JSONDecodeError:
                    # --- Fallback Sanitization ---
                    # Attempt to strip any leading table/frame characters (e.g., β”‚, β•­, β•°) that may wrap each line
                    try:
                        # Extract everything between the first '{' and last '}'
                        start_curly = response.index('{')
                        end_curly = response.rindex('}')
                        candidate = response[start_curly:end_curly + 1]
                        sanitized_lines = []
                        for line in candidate.splitlines():
                            # Remove common frame characters and leading whitespace
                            line = line.lstrip('β”‚|β•­β•°β•―β”œβ”€β”€ ').rstrip('β”‚|β•­β•°β•―β”œβ”€β”€ ')
                            sanitized_lines.append(line)
                        candidate_clean = '\n'.join(sanitized_lines)
                        return json.loads(candidate_clean)
                    except Exception as inner_e:
                        # Still failing, raise original error to trigger retry logic
                        try:
                            # --- Ultimate Fallback: Regex extraction ---
                            import re
                            atype = re.search(r'"action_type"\s*:\s*"(ask|test|diagnose)"', response, re.IGNORECASE)
                            content_match = re.search(r'"content"\s*:\s*"([^"]+?)"', response, re.IGNORECASE | re.DOTALL)
                            reasoning_match = re.search(r'"reasoning"\s*:\s*"([^"]+?)"', response, re.IGNORECASE | re.DOTALL)
                            if atype and content_match and reasoning_match:
                                return {
                                    "action_type": atype.group(1).lower(),
                                    "content": content_match.group(1).strip(),
                                    "reasoning": reasoning_match.group(1).strip(),
                                }
                        except Exception:
                            pass
                        raise e

        except (
            json.JSONDecodeError,
            IndexError,
            AttributeError,
        ) as e:
            logger.error(f"Failed to parse JSON response. Error: {e}")
            logger.debug(
                f"Response content: {response[:500]}..."
            )  # Log first 500 chars
            
            # Return the error for potential retry instead of immediately falling back
            raise e
    
    def _parse_json_with_retry(self, consensus_agent: Agent, consensus_prompt: str, max_retries: int = 3) -> Dict[str, Any]:
        """Parse JSON with retry logic for robustness - addresses Category 3.2"""
        for attempt in range(max_retries + 1):
            try:
                if attempt == 0:
                    response = consensus_agent.run(consensus_prompt)
                else:
                    # Retry with error feedback
                    retry_prompt = f"""
{consensus_prompt}

**CRITICAL: RETRY REQUIRED - ATTEMPT {attempt + 1}**
Your previous response could not be parsed as JSON. You MUST respond with ONLY a valid JSON object in exactly this format:

{{
    "action_type": "ask" | "test" | "diagnose",
    "content": "your content here",
    "reasoning": "your reasoning here"
}}

Do NOT include any other text, markdown formatting, or explanations. Only the raw JSON object.
NO SYSTEM MESSAGES, NO WRAPPER FORMAT. JUST THE JSON.
"""
                    response = consensus_agent.run(retry_prompt)
                
                # Handle different response types from swarms Agent
                response_text = ""
                if hasattr(response, 'content'):
                    response_text = response.content
                elif isinstance(response, dict):
                    # Handle swarms Agent response wrapper
                    if 'role' in response and 'content' in response:
                        response_text = response['content']
                    elif 'content' in response:
                        response_text = response['content']
                    else:
                        response_text = str(response)
                elif isinstance(response, str):
                    response_text = response
                else:
                    response_text = str(response)
                
                # Log the response for debugging
                logger.debug(f"Parsing attempt {attempt + 1}, response type: {type(response)}")
                logger.debug(f"Response content preview: {str(response_text)[:200]}...")
                
                return self._parse_json_response(response_text, attempt)
                
            except Exception as e:
                logger.warning(f"JSON parsing attempt {attempt + 1} failed: {e}")
                if attempt == max_retries:
                    # Final fallback after all retries
                    logger.error("All JSON parsing attempts failed, using fallback")
                    return {
                        "action_type": "ask",
                        "content": "Could you please clarify the next best step? The previous analysis was inconclusive.",
                        "reasoning": f"Fallback due to JSON parsing error after {max_retries + 1} attempts.",
                    }
        
        # Should never reach here, but just in case
        return {
            "action_type": "ask",
            "content": "Please provide more information about the patient's condition.",
            "reasoning": "Unexpected fallback in JSON parsing.",
        }

    def _estimate_cost(self, tests: Union[List[str], str]) -> int:
        """Estimates the cost of diagnostic tests."""
        if isinstance(tests, str):
            tests = [tests]

        cost = 0
        for test in tests:
            test_lower = test.lower().strip()

            # Enhanced cost matching with multiple strategies
            cost_found = False

            # Strategy 1: Exact match
            if test_lower in self.test_cost_db:
                cost += self.test_cost_db[test_lower]
                cost_found = True
                continue

            # Strategy 2: Partial match (find best matching key)
            best_match = None
            best_match_length = 0
            for cost_key in self.test_cost_db:
                if cost_key in test_lower or test_lower in cost_key:
                    if len(cost_key) > best_match_length:
                        best_match = cost_key
                        best_match_length = len(cost_key)

            if best_match:
                cost += self.test_cost_db[best_match]
                cost_found = True
                continue

            # Strategy 3: Keyword-based matching
            if any(
                keyword in test_lower
                for keyword in ["biopsy", "tissue"]
            ):
                cost += self.test_cost_db.get("biopsy", 800)
                cost_found = True
            elif any(
                keyword in test_lower
                for keyword in ["mri", "magnetic"]
            ):
                cost += self.test_cost_db.get("mri", 1500)
                cost_found = True
            elif any(
                keyword in test_lower
                for keyword in ["ct", "computed tomography"]
            ):
                cost += self.test_cost_db.get("ct scan", 1200)
                cost_found = True
            elif any(
                keyword in test_lower
                for keyword in ["xray", "x-ray", "radiograph"]
            ):
                cost += self.test_cost_db.get("chest x-ray", 200)
                cost_found = True
            elif any(
                keyword in test_lower
                for keyword in ["blood", "serum", "plasma"]
            ):
                cost += 100  # Basic blood test cost
                cost_found = True
            elif any(
                keyword in test_lower
                for keyword in ["culture", "sensitivity"]
            ):
                cost += self.test_cost_db.get("culture", 150)
                cost_found = True
            elif any(
                keyword in test_lower
                for keyword in ["immunohistochemistry", "ihc"]
            ):
                cost += self.test_cost_db.get(
                    "immunohistochemistry", 400
                )
                cost_found = True

            # Strategy 4: Default cost for unknown tests
            if not cost_found:
                cost += self.test_cost_db["default"]
                logger.debug(
                    f"Using default cost for unknown test: {test}"
                )

        return cost

    def _run_panel_deliberation(self, case_state: CaseState) -> Action:
        """Orchestrates one round of structured debate among the virtual panel - addresses Category 1.1"""
        logger.info(
            "🩺 Virtual medical panel deliberation commenced - analyzing patient case"
        )
        logger.debug(
            "Panel members: Dr. Hypothesis, Dr. Test-Chooser, Dr. Challenger, Dr. Stewardship, Dr. Checklist"
        )

        # Initialize structured deliberation state instead of conversational chaining
        deliberation_state = DeliberationState()
        
        # Prepare concise case context for each agent (token-optimized)
        remaining_budget = self.initial_budget - case_state.cumulative_cost
        budget_status = (
            "EXCEEDED"
            if remaining_budget < 0
            else f"${remaining_budget:,}"
        )

        # Full context - let agents self-regulate based on token guidance
        base_context = f"""
=== DIAGNOSTIC CASE STATUS - ROUND {case_state.iteration} ===

INITIAL PRESENTATION:
{case_state.initial_vignette}

EVIDENCE GATHERED:
{case_state.summarize_evidence()}

CURRENT STATE:
- Tests Performed: {', '.join(case_state.tests_performed) if case_state.tests_performed else 'None'}
- Questions Asked: {len(case_state.questions_asked)}
- Cumulative Cost: ${case_state.cumulative_cost:,}
- Remaining Budget: {budget_status}
- Mode: {self.mode}
        """

        # Check mode-specific constraints
        if self.mode == "instant":
            # For instant mode, skip deliberation and go straight to diagnosis
            action_dict = {
                "action_type": "diagnose",
                "content": case_state.get_leading_diagnosis(),
                "reasoning": (
                    "Instant diagnosis mode - providing immediate assessment based on initial presentation"
                ),
            }
            return Action(**action_dict)

        # Check for stagnation before running deliberation
        stagnation_detected = False
        if len(case_state.last_actions) >= 2:
            last_action = case_state.last_actions[-1]
            stagnation_detected = case_state.is_stagnating(last_action)
            deliberation_state.stagnation_detected = stagnation_detected
            if stagnation_detected:
                logger.warning("πŸ”„ Stagnation detected - will force different action")

        # Generate dynamic situational context for all agents
        deliberation_state.situational_context = self._generate_situational_context(case_state, remaining_budget)

        # Run each specialist agent in parallel-like fashion with structured output
        # Each agent gets the same base context plus their role-specific dynamic prompt
        try:
            # Dr. Hypothesis - Differential diagnosis and probability assessment
            logger.info("🧠 Dr. Hypothesis analyzing differential diagnosis...")
            hypothesis_prompt = self._get_prompt_for_role(AgentRole.HYPOTHESIS, case_state) + "\n\n" + base_context
            hypothesis_response = self._safe_agent_run(
                self.agents[AgentRole.HYPOTHESIS], hypothesis_prompt, agent_role=AgentRole.HYPOTHESIS
            )
            
            # Update case state with new differential (supports both function calls and text)
            self._update_differential_from_hypothesis(case_state, hypothesis_response)
            
            # Store the analysis for deliberation state (convert to text format for other agents)
            if hasattr(hypothesis_response, 'content'):
                deliberation_state.hypothesis_analysis = hypothesis_response.content
            else:
                deliberation_state.hypothesis_analysis = str(hypothesis_response)

            # Dr. Test-Chooser - Information value optimization
            logger.info("πŸ”¬ Dr. Test-Chooser selecting optimal tests...")
            test_chooser_prompt = self._get_prompt_for_role(AgentRole.TEST_CHOOSER, case_state) + "\n\n" + base_context
            if self.mode == "question_only":
                test_chooser_prompt += "\n\nIMPORTANT: This is QUESTION-ONLY mode. You may ONLY recommend patient questions, not diagnostic tests."
            deliberation_state.test_chooser_analysis = self._safe_agent_run(
                self.agents[AgentRole.TEST_CHOOSER], test_chooser_prompt, agent_role=AgentRole.TEST_CHOOSER
            )

            # Dr. Challenger - Bias identification and alternative hypotheses
            logger.info("πŸ€” Dr. Challenger challenging assumptions...")
            challenger_prompt = self._get_prompt_for_role(AgentRole.CHALLENGER, case_state) + "\n\n" + base_context
            deliberation_state.challenger_analysis = self._safe_agent_run(
                self.agents[AgentRole.CHALLENGER], challenger_prompt, agent_role=AgentRole.CHALLENGER
            )

            # Dr. Stewardship - Cost-effectiveness analysis
            logger.info("πŸ’° Dr. Stewardship evaluating cost-effectiveness...")
            stewardship_prompt = self._get_prompt_for_role(AgentRole.STEWARDSHIP, case_state) + "\n\n" + base_context
            if self.enable_budget_tracking:
                stewardship_prompt += f"\n\nBUDGET TRACKING ENABLED - Current cost: ${case_state.cumulative_cost}, Remaining: ${remaining_budget}"
            deliberation_state.stewardship_analysis = self._safe_agent_run(
                self.agents[AgentRole.STEWARDSHIP], stewardship_prompt, agent_role=AgentRole.STEWARDSHIP
            )

            # Dr. Checklist - Quality assurance
            logger.info("βœ… Dr. Checklist performing quality control...")
            checklist_prompt = self._get_prompt_for_role(AgentRole.CHECKLIST, case_state) + "\n\n" + base_context
            deliberation_state.checklist_analysis = self._safe_agent_run(
                self.agents[AgentRole.CHECKLIST], checklist_prompt, agent_role=AgentRole.CHECKLIST
            )

            # Consensus Coordinator - Final decision synthesis using structured state
            logger.info("🀝 Consensus Coordinator synthesizing panel decision...")
            
            # Generate the structured consensus prompt
            consensus_prompt = deliberation_state.to_consensus_prompt()
            
            # Add mode-specific constraints to consensus
            if self.mode == "budgeted" and remaining_budget <= 0:
                consensus_prompt += "\n\nBUDGET CONSTRAINT: Budget exceeded - must either ask questions or provide final diagnosis."

            # Use function calling with retry logic for robust structured output
            action_dict = self._get_consensus_with_retry(consensus_prompt)

            # Validate action based on mode constraints
            action = Action(**action_dict)
            
            # Apply mode-specific validation and corrections
            action = self._validate_and_correct_action(action, case_state, remaining_budget)

            return action

        except Exception as e:
            logger.error(f"Error during panel deliberation: {e}")
            # Fallback action
            return Action(
                action_type="ask",
                content="Could you please provide more information about the patient's current condition?",
                reasoning=f"Fallback due to panel deliberation error: {str(e)}",
            )
    
    def _generate_situational_context(self, case_state: CaseState, remaining_budget: int) -> str:
        """Generate dynamic situational context based on current case state - addresses Category 4.2"""
        context_parts = []
        
        # Budget-related context
        if remaining_budget < 1000:
            context_parts.append(f"URGENT: Remaining budget critically low (${remaining_budget}). Focus on cost-effective actions.")
        elif remaining_budget < 2000:
            context_parts.append(f"WARNING: Budget running low (${remaining_budget}). Prioritize high-value tests.")
        
        # Diagnostic confidence context
        max_confidence = case_state.get_max_confidence()
        if max_confidence > 0.85:
            context_parts.append(f"FINAL STAGES: High confidence diagnosis available ({max_confidence:.0%}). Consider definitive action.")
        elif max_confidence > 0.70:
            context_parts.append(f"CONVERGING: Moderate confidence in leading diagnosis ({max_confidence:.0%}). Focus on confirmation.")
        
        # Iteration context
        if case_state.iteration > 7:
            context_parts.append(f"EXTENDED CASE: {case_state.iteration} rounds completed. Move toward decisive action.")
        elif case_state.iteration > 5:
            context_parts.append(f"PROLONGED: {case_state.iteration} rounds. Avoid further exploratory steps unless critical.")
        
        # Test/cost context
        if len(case_state.tests_performed) > 5:
            context_parts.append("EXTENSIVE TESTING: Many tests completed. Focus on synthesis rather than additional testing.")
        
        return " | ".join(context_parts) if context_parts else ""
    
    def _update_differential_from_hypothesis(self, case_state: CaseState, hypothesis_response):
        """Extract and update differential diagnosis from Dr. Hypothesis analysis - now supports both function calls and text"""
        try:
            # Try to extract structured data from function call first
            if hasattr(hypothesis_response, '__dict__') or isinstance(hypothesis_response, dict):
                structured_data = self._extract_function_call_output(hypothesis_response)
                
                # Validate the structured data using the HypothesisArguments schema
                try:
                    _ = HypothesisArguments(**structured_data)
                except ValidationError as e:
                    logger.warning(f"HypothesisArguments validation failed: {e}")
                
                # Check if we got structured differential data
                if "differential_diagnoses" in structured_data:
                    # Update case state with structured data
                    new_differential = {}
                    for dx in structured_data["differential_diagnoses"]:
                        new_differential[dx["diagnosis"]] = dx["probability"]
                    
                    case_state.update_differential(new_differential)
                    
                    # Update the main differential for backward compatibility
                    summary = structured_data.get("summary", "Differential diagnosis updated")
                    dx_text = f"{summary}\n\nTop Diagnoses:\n"
                    for dx in structured_data["differential_diagnoses"]:
                        dx_text += f"- {dx['diagnosis']}: {dx['probability']:.0%} - {dx['rationale']}\n"
                    
                    if "key_evidence" in structured_data:
                        dx_text += f"\nKey Evidence: {structured_data['key_evidence']}"
                    if "contradictory_evidence" in structured_data:
                        dx_text += f"\nContradictory Evidence: {structured_data['contradictory_evidence']}"
                        
                    self.differential_diagnosis = dx_text
                    logger.debug(f"Updated differential from function call: {new_differential}")
                    return
            
            # Fallback to text-based extraction
            hypothesis_text = str(hypothesis_response)
            if hasattr(hypothesis_response, 'content'):
                hypothesis_text = hypothesis_response.content
                
            # Simple extraction - look for percentage patterns in the text
            import re
            
            # Update the main differential diagnosis for backward compatibility
            self.differential_diagnosis = hypothesis_text
            
            # Try to extract structured probabilities
            # Look for patterns like "Diagnosis: 85%" or "Disease (70%)"
            percentage_pattern = r'([A-Za-z][^:(\n]*?)[\s:]*[\(]?(\d{1,3})%[\)]?'
            matches = re.findall(percentage_pattern, hypothesis_text)
            
            new_differential = {}
            for match in matches:
                diagnosis = match[0].strip().rstrip(':-()').strip()
                probability = float(match[1]) / 100.0
                if 0 <= probability <= 1.0 and len(diagnosis) > 3:  # Basic validation
                    new_differential[diagnosis] = probability
            
            if new_differential:
                case_state.update_differential(new_differential)
                logger.debug(f"Updated differential from text parsing: {new_differential}")
                
        except Exception as e:
            logger.debug(f"Could not extract structured differential: {e}")
            # Still update the text version for display
            hypothesis_text = str(hypothesis_response)
            if hasattr(hypothesis_response, 'content'):
                hypothesis_text = hypothesis_response.content
            self.differential_diagnosis = hypothesis_text
    
    def _validate_and_correct_action(self, action: Action, case_state: CaseState, remaining_budget: int) -> Action:
        """Validate and correct actions based on mode constraints and context"""
        
        # Mode-specific validations
        if self.mode == "question_only" and action.action_type == "test":
            logger.warning("Test ordering attempted in question-only mode, converting to ask action")
            action.action_type = "ask"
            action.content = "Can you provide more details about the patient's symptoms and history?"
            action.reasoning = "Mode constraint: question-only mode active"
        
        if self.mode == "budgeted" and action.action_type == "test" and remaining_budget <= 0:
            logger.warning("Test ordering attempted with insufficient budget, converting to diagnose action")
            action.action_type = "diagnose"
            action.content = case_state.get_leading_diagnosis()
            action.reasoning = "Budget constraint: insufficient funds for additional testing"
        
        # Stagnation handling - ensure we have a valid diagnosis
        if case_state.is_stagnating(action):
            logger.warning("Stagnation detected, forcing diagnostic decision")
            action.action_type = "diagnose"
            leading_diagnosis = case_state.get_leading_diagnosis()
            # Ensure the diagnosis is meaningful, not corrupted
            if leading_diagnosis == "No diagnosis formulated" or len(leading_diagnosis) < 10 or any(char in leading_diagnosis for char in ['x10^9', '–', '40–']):
                # Use a fallback diagnosis based on the case context
                action.content = "Unable to establish definitive diagnosis - further evaluation needed"
            else:
                action.content = leading_diagnosis
            action.reasoning = "Forced diagnosis due to detected stagnation in diagnostic process"
        
        # High confidence threshold
        if action.action_type != "diagnose" and case_state.get_max_confidence() > 0.90:
            logger.info("Very high confidence reached, recommending diagnosis")
            action.action_type = "diagnose"
            action.content = case_state.get_leading_diagnosis()
            action.reasoning = "High confidence threshold reached - proceeding to final diagnosis"
        
        return action

    def _interact_with_gatekeeper(
        self, action: Action, full_case_details: str
    ) -> str:
        """Sends the panel's action to the Gatekeeper and returns its response."""
        gatekeeper = self.agents[AgentRole.GATEKEEPER]

        if action.action_type == "ask":
            request = f"Question: {action.content}"
        elif action.action_type == "test":
            request = f"Tests ordered: {', '.join(action.content)}"
        else:
            return "No interaction needed for 'diagnose' action."

        # The Gatekeeper needs the full case to act as an oracle
        prompt = f"""
        Full Case Details (for your reference only):
        ---
        {full_case_details}
        ---
        
        Request from Diagnostic Agent:
        {request}
        """

        response = self._safe_agent_run(gatekeeper, prompt, agent_role=AgentRole.GATEKEEPER)
        return response

    def _judge_diagnosis(
        self, candidate_diagnosis: str, ground_truth: str
    ) -> Dict[str, Any]:
        """Uses the Judge agent to evaluate the final diagnosis."""
        judge = self.agents[AgentRole.JUDGE]
        prompt = f"""
        Please evaluate the following diagnosis.
        Ground Truth: "{ground_truth}"
        Candidate Diagnosis: "{candidate_diagnosis}"
        
        You must provide your evaluation in exactly this format:
        Score: [number from 1-5]
        Justification: [detailed reasoning for the score]
        """
        response = self._safe_agent_run(judge, prompt, agent_role=AgentRole.JUDGE)
        
        # Handle different response types from swarms Agent
        response_text = ""
        if hasattr(response, 'content'):
            response_text = response.content
        elif isinstance(response, dict):
            if 'role' in response and 'content' in response:
                response_text = response['content']
            elif 'content' in response:
                response_text = response['content']
            else:
                response_text = str(response)
        elif isinstance(response, str):
            response_text = response
        else:
            response_text = str(response)

        # Enhanced parsing for demonstration; a more robust solution would use structured output.
        try:
            # Look for score patterns
            import re
            
            # Try multiple score patterns
            score_patterns = [
                r"Score:\s*(\d+(?:\.\d+)?)",
                r"Score\s*(\d+(?:\.\d+)?)",
                r"(\d+(?:\.\d+)?)/5",
                r"Score.*?(\d+(?:\.\d+)?)",
            ]
            
            score = 0.0
            for pattern in score_patterns:
                match = re.search(pattern, response_text, re.IGNORECASE)
                if match:
                    score = float(match.group(1))
                    break
            
            # Extract reasoning
            reasoning_patterns = [
                r"Justification:\s*(.+?)(?:\n\n|\Z)",
                r"Reasoning:\s*(.+?)(?:\n\n|\Z)",
                r"Explanation:\s*(.+?)(?:\n\n|\Z)",
            ]
            
            reasoning = "Could not parse judge's reasoning."
            for pattern in reasoning_patterns:
                match = re.search(pattern, response_text, re.IGNORECASE | re.DOTALL)
                if match:
                    reasoning = match.group(1).strip()
                    break
            
            # If no specific reasoning found, use the whole response after score
            if reasoning == "Could not parse judge's reasoning." and score > 0:
                # Try to extract everything after the score
                score_match = re.search(r"Score:?\s*\d+(?:\.\d+)?", response_text, re.IGNORECASE)
                if score_match:
                    reasoning = response_text[score_match.end():].strip()
                    # Clean up common prefixes
                    reasoning = re.sub(r"^(Justification|Reasoning|Explanation):\s*", "", reasoning, flags=re.IGNORECASE)
                
            # Final fallback - use the whole response if we have a score
            if reasoning == "Could not parse judge's reasoning." and score > 0:
                reasoning = response_text
                
        except (IndexError, ValueError, AttributeError) as e:
            logger.error(f"Error parsing judge response: {e}")
            score = 0.0
            reasoning = f"Could not parse judge's response: {str(e)}"

        logger.info(f"Judge evaluation: Score={score}, Reasoning preview: {reasoning[:100]}...")
        return {"score": score, "reasoning": reasoning}

    def run(
        self,
        initial_case_info: str,
        full_case_details: str,
        ground_truth_diagnosis: str,
    ) -> DiagnosisResult:
        """
        Executes the full sequential diagnostic process with structured state management.

        Args:
            initial_case_info (str): The initial abstract of the case.
            full_case_details (str): The complete case file for the Gatekeeper.
            ground_truth_diagnosis (str): The correct final diagnosis for evaluation.

        Returns:
            DiagnosisResult: An object containing the final diagnosis, evaluation, cost, and history.
        """
        start_time = time.time()
        
        # Initialize structured case state
        case_state = CaseState(initial_vignette=initial_case_info)
        case_state.cumulative_cost = self.physician_visit_cost  # Add initial visit cost
        self.cumulative_cost = case_state.cumulative_cost
        
        # Store for potential use by other methods
        self.case_state = case_state
        
        # Add to conversation for history tracking
        self.conversation.add(
            "Gatekeeper",
            f"Initial Case Information: {initial_case_info}",
        )
        case_state.add_evidence(f"Initial presentation: {initial_case_info}")

        logger.info(
            f"Initial physician visit cost: ${self.physician_visit_cost}"
        )

        final_diagnosis = None
        iteration_count = 0

        for i in range(self.max_iterations):
            iteration_count = i + 1
            case_state.iteration = iteration_count
            
            logger.info(
                f"--- Starting Diagnostic Loop {iteration_count}/{self.max_iterations} ---"
            )
            logger.info(
                f"Current cost: ${case_state.cumulative_cost:,} | Remaining budget: ${self.initial_budget - case_state.cumulative_cost:,}"
            )

            try:
                # Panel deliberates to decide on the next action using structured state
                action = self._run_panel_deliberation(case_state)
                logger.info(
                    f"βš•οΈ Panel decision: {action.action_type.upper()} -> {action.content}"
                )
                logger.info(
                    f"πŸ’­ Medical reasoning: {action.reasoning}"
                )

                # Add action to case state for stagnation detection
                case_state.add_action(action)

                if action.action_type == "diagnose":
                    final_diagnosis = action.content
                    logger.info(
                        f"Final diagnosis proposed: {final_diagnosis}"
                    )
                    break

                # Handle mode-specific constraints (most are now handled in validation)
                if (
                    self.mode == "question_only"
                    and action.action_type == "test"
                ):
                    logger.warning(
                        "Test ordering blocked in question-only mode"
                    )
                    continue

                if (
                    self.mode == "budgeted"
                    and action.action_type == "test"
                ):
                    # Check if we can afford the tests
                    estimated_test_cost = self._estimate_cost(
                        action.content
                    )
                    if (
                        case_state.cumulative_cost + estimated_test_cost
                        > self.initial_budget
                    ):
                        logger.warning(
                            f"Test cost ${estimated_test_cost} would exceed budget. Skipping tests."
                        )
                        continue

                # Interact with the Gatekeeper
                response = self._interact_with_gatekeeper(
                    action, full_case_details
                )
                self.conversation.add("Gatekeeper", response)
                case_state.add_evidence(response)

                # Update costs and state based on action type
                if action.action_type == "test":
                    test_cost = self._estimate_cost(action.content)
                    case_state.cumulative_cost += test_cost
                    case_state.add_test(str(action.content))
                    self.cumulative_cost = case_state.cumulative_cost  # Keep backward compatibility
                    
                    logger.info(f"Tests ordered: {action.content}")
                    logger.info(
                        f"Test cost: ${test_cost:,} | Cumulative cost: ${case_state.cumulative_cost:,}"
                    )
                elif action.action_type == "ask":
                    case_state.add_question(str(action.content))
                    # Questions are part of the same visit until tests are ordered
                    logger.info(f"Questions asked: {action.content}")
                    logger.info(
                        "No additional cost for questions in same visit"
                    )

                # Check budget constraints for budgeted mode
                if (
                    self.mode == "budgeted"
                    and case_state.cumulative_cost >= self.initial_budget
                ):
                    logger.warning(
                        "Budget limit reached. Forcing final diagnosis."
                    )
                    # Use current leading diagnosis
                    final_diagnosis = case_state.get_leading_diagnosis()
                    break

            except Exception as e:
                logger.error(
                    f"Error in diagnostic loop {iteration_count}: {e}"
                )
                # Continue to next iteration or break if critical error
                continue

        else:
            # Max iterations reached without diagnosis
            final_diagnosis = case_state.get_leading_diagnosis()
            if final_diagnosis == "No diagnosis formulated":
                final_diagnosis = "Diagnosis not reached within maximum iterations."
            logger.warning(
                f"Max iterations ({self.max_iterations}) reached. Using best available diagnosis."
            )

        # Ensure we have a final diagnosis
        if not final_diagnosis or final_diagnosis.strip() == "":
            final_diagnosis = (
                "Unable to determine diagnosis within constraints."
            )

        # Calculate total time
        total_time = time.time() - start_time
        logger.info(
            f"Diagnostic session completed in {total_time:.2f} seconds"
        )

        # Judge the final diagnosis
        logger.info("Evaluating final diagnosis...")
        try:
            judgement = self._judge_diagnosis(
                final_diagnosis, ground_truth_diagnosis
            )
        except Exception as e:
            logger.error(f"Error in diagnosis evaluation: {e}")
            judgement = {
                "score": 0.0,
                "reasoning": f"Evaluation error: {str(e)}",
            }

        # Create comprehensive result
        result = DiagnosisResult(
            final_diagnosis=final_diagnosis,
            ground_truth=ground_truth_diagnosis,
            accuracy_score=judgement["score"],
            accuracy_reasoning=judgement["reasoning"],
            total_cost=case_state.cumulative_cost,
            iterations=iteration_count,
            conversation_history=self.conversation.get_str(),
        )

        logger.info("Diagnostic process completed:")
        logger.info(f"  Final diagnosis: {final_diagnosis}")
        logger.info(f"  Ground truth: {ground_truth_diagnosis}")
        logger.info(f"  Accuracy score: {judgement['score']}/5.0")
        logger.info(f"  Total cost: ${case_state.cumulative_cost:,}")
        logger.info(f"  Iterations: {iteration_count}")

        return result

    def run_ensemble(
        self,
        initial_case_info: str,
        full_case_details: str,
        ground_truth_diagnosis: str,
        num_runs: int = 3,
    ) -> DiagnosisResult:
        """
        Runs multiple independent diagnostic sessions and aggregates the results.

        Args:
            initial_case_info (str): The initial abstract of the case.
            full_case_details (str): The complete case file for the Gatekeeper.
            ground_truth_diagnosis (str): The correct final diagnosis for evaluation.
            num_runs (int): Number of independent runs to perform.

        Returns:
            DiagnosisResult: Aggregated result from ensemble runs.
        """
        logger.info(
            f"Starting ensemble run with {num_runs} independent sessions"
        )

        ensemble_results = []
        total_cost = 0

        for run_id in range(num_runs):
            logger.info(
                f"=== Ensemble Run {run_id + 1}/{num_runs} ==="
            )

            # Create a fresh orchestrator instance for each run
            run_orchestrator = MaiDxOrchestrator(
                model_name=self.model_name,
                max_iterations=self.max_iterations,
                initial_budget=self.initial_budget,
                mode="no_budget",  # Use no_budget for ensemble runs
                physician_visit_cost=self.physician_visit_cost,
                enable_budget_tracking=False,
            )

            # Run the diagnostic session
            result = run_orchestrator.run(
                initial_case_info,
                full_case_details,
                ground_truth_diagnosis,
            )
            ensemble_results.append(result)
            total_cost += result.total_cost

            logger.info(
                f"Run {run_id + 1} completed: {result.final_diagnosis} (Score: {result.accuracy_score})"
            )

        # Aggregate results using consensus
        final_diagnosis = self._aggregate_ensemble_diagnoses(
            [r.final_diagnosis for r in ensemble_results]
        )

        # Judge the aggregated diagnosis
        judgement = self._judge_diagnosis(
            final_diagnosis, ground_truth_diagnosis
        )

        # Calculate average metrics
        avg_iterations = sum(
            r.iterations for r in ensemble_results
        ) / len(ensemble_results)

        # Combine conversation histories
        combined_history = "\n\n=== ENSEMBLE RESULTS ===\n"
        for i, result in enumerate(ensemble_results):
            combined_history += f"\n--- Run {i+1} ---\n"
            combined_history += (
                f"Diagnosis: {result.final_diagnosis}\n"
            )
            combined_history += f"Score: {result.accuracy_score}\n"
            combined_history += f"Cost: ${result.total_cost:,}\n"
            combined_history += f"Iterations: {result.iterations}\n"

        combined_history += "\n--- Aggregated Result ---\n"
        combined_history += f"Final Diagnosis: {final_diagnosis}\n"
        combined_history += f"Reasoning: {judgement['reasoning']}\n"

        ensemble_result = DiagnosisResult(
            final_diagnosis=final_diagnosis,
            ground_truth=ground_truth_diagnosis,
            accuracy_score=judgement["score"],
            accuracy_reasoning=judgement["reasoning"],
            total_cost=total_cost,  # Sum of all runs
            iterations=int(avg_iterations),
            conversation_history=combined_history,
        )

        logger.info(
            f"Ensemble completed: {final_diagnosis} (Score: {judgement['score']})"
        )
        return ensemble_result

    def _aggregate_ensemble_diagnoses(
        self, diagnoses: List[str]
    ) -> str:
        """Aggregates multiple diagnoses from ensemble runs."""
        # Simple majority voting or use the most confident diagnosis
        if not diagnoses:
            return "No diagnosis available"

        # Remove any empty or invalid diagnoses
        valid_diagnoses = [
            d
            for d in diagnoses
            if d and d.strip() and "not reached" not in d.lower()
        ]

        if not valid_diagnoses:
            return diagnoses[0] if diagnoses else "No valid diagnosis"

        # If all diagnoses are the same, return that
        if len(set(valid_diagnoses)) == 1:
            return valid_diagnoses[0]

        # Use an aggregator agent to select the best diagnosis
        try:
            aggregator_prompt = f"""
            You are a medical consensus aggregator. Given multiple diagnostic assessments from independent medical panels, 
            select the most accurate and complete diagnosis.
            
            Diagnoses to consider:
            {chr(10).join(f"{i+1}. {d}" for i, d in enumerate(valid_diagnoses))}
            
            Provide the single best diagnosis that represents the medical consensus. 
            Consider clinical accuracy, specificity, and completeness.
            """

            aggregator = Agent(
                agent_name="Ensemble Aggregator",
                system_prompt=aggregator_prompt,
                model_name=self.model_name,
                max_loops=1,
                print_on=True,  # Enable printing for aggregator agent
            )

            agg_resp = self._safe_agent_run(aggregator, aggregator_prompt)
            if hasattr(agg_resp, "content"):
                return agg_resp.content.strip()
            return str(agg_resp).strip()

        except Exception as e:
            logger.error(f"Error in ensemble aggregation: {e}")
            # Fallback to most common diagnosis
            from collections import Counter

            return Counter(valid_diagnoses).most_common(1)[0][0]

    @classmethod
    def create_variant(
        cls, variant: str, **kwargs
    ) -> "MaiDxOrchestrator":
        """
        Factory method to create different MAI-DxO variants as described in the paper.

        Args:
            variant (str): One of 'instant', 'question_only', 'budgeted', 'no_budget', 'ensemble'
            **kwargs: Additional parameters for the orchestrator

        Returns:
            MaiDxOrchestrator: Configured orchestrator instance
        """
        variant_configs = {
            "instant": {
                "mode": "instant",
                "max_iterations": 1,
                "enable_budget_tracking": False,
            },
            "question_only": {
                "mode": "question_only",
                "max_iterations": 10,
                "enable_budget_tracking": False,
            },
            "budgeted": {
                "mode": "budgeted",
                "max_iterations": 10,
                "enable_budget_tracking": True,
                "initial_budget": kwargs.get("budget", 5000),  # Fixed: map budget to initial_budget
            },
            "no_budget": {
                "mode": "no_budget",
                "max_iterations": 10,
                "enable_budget_tracking": False,
            },
            "ensemble": {
                "mode": "no_budget",
                "max_iterations": 10,
                "enable_budget_tracking": False,
            },
        }

        if variant not in variant_configs:
            raise ValueError(
                f"Unknown variant: {variant}. Choose from: {list(variant_configs.keys())}"
            )

        config = variant_configs[variant]
        config.update(kwargs)  # Allow overrides
        
        # Remove 'budget' parameter if present, as it's mapped to 'initial_budget'
        config.pop('budget', None)

        return cls(**config)

    # ------------------------------------------------------------------
    # Helper utilities – throttling & robust JSON parsing
    # ------------------------------------------------------------------

    def _safe_agent_run(
        self,
        agent: "Agent",  # type: ignore – forward reference
        prompt: str,
        retries: int = 3,
        agent_role: AgentRole = None,
    ) -> Any:
        """Safely call `agent.run` while respecting OpenAI rate-limits.

        Features:
        1.  Estimates token usage and provides guidance to agents for self-regulation
        2.  Applies progressive delays to respect rate limits
        3.  Lets agents dynamically adjust their response strategy based on token constraints
        """

        # Get agent role for token calculations
        if agent_role is None:
            agent_role = AgentRole.CONSENSUS  # Default fallback

        # Estimate total tokens in the request
        estimated_input_tokens = self._estimate_tokens(prompt)
        max_output_tokens = self._get_agent_max_tokens(agent_role)
        total_estimated_tokens = estimated_input_tokens + max_output_tokens
        
        # Add dynamic token guidance to the prompt instead of truncating
        token_guidance = self._generate_token_guidance(
            estimated_input_tokens, max_output_tokens, total_estimated_tokens, agent_role
        )
        
        # Prepend token guidance to prompt
        enhanced_prompt = f"{token_guidance}\n\n{prompt}"
        
        logger.debug(f"Agent {agent_role.value}: Input={estimated_input_tokens}, Output={max_output_tokens}, Total={total_estimated_tokens}")

        # Increased base delay for better rate limit compliance
        base_delay = max(self.request_delay, 5.0)  # Minimum 5 seconds between requests

        for attempt in range(retries + 1):
            # Progressive delay: 5s, 15s, 45s, 135s
            current_delay = base_delay * (3 ** attempt) if attempt > 0 else base_delay
            
            logger.info(f"Request attempt {attempt + 1}/{retries + 1}, waiting {current_delay:.1f}s...")
            time.sleep(current_delay)

            try:
                return agent.run(enhanced_prompt)
            except Exception as e:
                err_msg = str(e).lower()
                if "rate_limit" in err_msg or "ratelimiterror" in err_msg or "429" in str(e):
                    logger.warning(
                        f"Rate-limit encountered (attempt {attempt + 1}/{retries + 1}). "
                        f"Will retry after {base_delay * (3 ** (attempt + 1)):.1f}s..."
                    )
                    continue  # Next retry applies longer delay
                # For non-rate-limit errors, propagate immediately
                raise

        # All retries exhausted
        raise RuntimeError("Maximum retries exceeded for agent.run – aborting call")

    def _robust_parse_action(self, raw_response: str) -> Dict[str, Any]:
        """Extract a JSON *action* object from `raw_response`.

        The function tries multiple strategies and finally returns a default
        *ask* action if no valid JSON can be located.
        """

        import json, re

        # Strip common markdown fences
        if raw_response.strip().startswith("```"):
            segments = raw_response.split("```")
            for seg in segments:
                seg = seg.strip()
                if seg.startswith("{") and seg.endswith("}"):
                    raw_response = seg
                    break

        # 1) Fast path – direct JSON decode
        try:
            data = json.loads(raw_response)
            if isinstance(data, dict) and "action_type" in data:
                return data
        except Exception:
            pass

        # 2) Regex search for the first balanced curly block
        match = re.search(r"\{[\s\S]*?\}", raw_response)
        if match:
            candidate = match.group(0)
            # Remove leading drawing characters (e.g., table borders)
            candidate = "\n".join(line.lstrip("β”‚| ").rstrip("β”‚| ") for line in candidate.splitlines())
            try:
                data = json.loads(candidate)
                if isinstance(data, dict) and "action_type" in data:
                    return data
            except Exception:
                pass

        logger.error("Failed to parse a valid action JSON. Falling back to default ask action")
        return {
            "action_type": "ask",
            "content": "Could you please clarify the next best step? The previous analysis was inconclusive.",
            "reasoning": "Fallback generated due to JSON parsing failure.",
        }

    def _extract_function_call_output(self, agent_response) -> Dict[str, Any]:
        """Extract structured output from agent function call response.
        
        This method handles the swarms Agent response format when using function calling.
        The response should contain tool calls with the structured data.
        """
        try:
            # Handle different response formats from swarms Agent
            if isinstance(agent_response, dict):
                # Check for tool calls in the response
                if "tool_calls" in agent_response and agent_response["tool_calls"]:
                    tool_call = agent_response["tool_calls"][0]  # Get first tool call
                    if "function" in tool_call and "arguments" in tool_call["function"]:
                        arguments = tool_call["function"]["arguments"]
                        if isinstance(arguments, str):
                            # Parse JSON string arguments
                            import json
                            arguments = json.loads(arguments)
                        return arguments
                
                # Check for direct arguments in response
                if "arguments" in agent_response:
                    arguments = agent_response["arguments"]
                    if isinstance(arguments, str):
                        import json
                        arguments = json.loads(arguments)
                    return arguments
                    
                # Check if response itself has the expected structure
                if all(key in agent_response for key in ["action_type", "content", "reasoning"]):
                    return {
                        "action_type": agent_response["action_type"],
                        "content": agent_response["content"], 
                        "reasoning": agent_response["reasoning"]
                    }
            
            # Handle Agent object response
            elif hasattr(agent_response, "__dict__"):
                # Check for tool_calls attribute
                if hasattr(agent_response, "tool_calls") and agent_response.tool_calls:
                    tool_call = agent_response.tool_calls[0]
                    if hasattr(tool_call, "function") and hasattr(tool_call.function, "arguments"):
                        arguments = tool_call.function.arguments
                        if isinstance(arguments, str):
                            import json
                            arguments = json.loads(arguments)
                        return arguments
                
                # Check for direct function call response
                if hasattr(agent_response, "function_call"):
                    function_call = agent_response.function_call
                    if hasattr(function_call, "arguments"):
                        arguments = function_call.arguments
                        if isinstance(arguments, str):
                            import json
                            arguments = json.loads(arguments)
                        return arguments
                        
                # Try to extract from response content
                if hasattr(agent_response, "content"):
                    content = agent_response.content
                    if isinstance(content, dict) and all(key in content for key in ["action_type", "content", "reasoning"]):
                        return content
            
            # Handle string response (fallback to regex parsing)
            elif isinstance(agent_response, str):
                # Try to parse as JSON first
                try:
                    import json
                    parsed = json.loads(agent_response)
                    if isinstance(parsed, dict) and all(key in parsed for key in ["action_type", "content", "reasoning"]):
                        return parsed
                except:
                    pass
                
                # Fallback to regex extraction
                import re
                action_type_match = re.search(r'"action_type":\s*"(ask|test|diagnose)"', agent_response, re.IGNORECASE)
                content_match = re.search(r'"content":\s*"([^"]+)"', agent_response, re.IGNORECASE | re.DOTALL)
                reasoning_match = re.search(r'"reasoning":\s*"([^"]+)"', agent_response, re.IGNORECASE | re.DOTALL)
                
                if action_type_match and content_match and reasoning_match:
                    return {
                        "action_type": action_type_match.group(1).lower(),
                        "content": content_match.group(1).strip(),
                        "reasoning": reasoning_match.group(1).strip()
                    }
            
            logger.warning(f"Could not extract function call output from response type: {type(agent_response)}")
            logger.debug(f"Response content: {str(agent_response)[:500]}...")
            
        except Exception as e:
            logger.error(f"Error extracting function call output: {e}")
            logger.debug(f"Response: {str(agent_response)[:500]}...")
        
        # Final fallback
        return {
            "action_type": "ask",
            "content": "Could you please provide more information to help guide the next diagnostic step?",
            "reasoning": "Fallback action due to function call parsing error."
        }

    def _get_consensus_with_retry(self, consensus_prompt: str, max_retries: int = 2) -> Dict[str, Any]:
        """Get consensus decision with function call retry logic."""
        
        for attempt in range(max_retries + 1):
            try:
                if attempt == 0:
                    # First attempt - use original prompt
                    response = self._safe_agent_run(
                        self.agents[AgentRole.CONSENSUS], consensus_prompt, agent_role=AgentRole.CONSENSUS
                    )
                else:
                    # Retry with explicit function call instruction
                    retry_prompt = f"""
{consensus_prompt}

**CRITICAL: RETRY ATTEMPT {attempt}**
Your previous response failed to use the required `make_consensus_decision` function. 
You MUST call the make_consensus_decision function with the appropriate parameters:
- action_type: "ask", "test", or "diagnose"
- content: specific question, test name, or diagnosis
- reasoning: your detailed reasoning

Please try again and ensure you call the function correctly.
"""
                    response = self._safe_agent_run(
                        self.agents[AgentRole.CONSENSUS], retry_prompt, agent_role=AgentRole.CONSENSUS
                    )
                
                logger.debug(f"Consensus attempt {attempt + 1}, response type: {type(response)}")
                
                # Try to extract function call output
                action_dict = self._extract_function_call_output(response)
                
                # Validate and enforce schema using ConsensusArguments for type safety
                try:
                    validated_args = ConsensusArguments(**action_dict)
                    action_dict = validated_args.dict()
                except ValidationError as e:
                    logger.warning(f"ConsensusArguments validation failed: {e}")
                
                # Check if we got a valid response (not a fallback)
                if not action_dict.get("reasoning", "").startswith("Fallback action due to function call parsing error"):
                    logger.debug(f"Consensus function call successful on attempt {attempt + 1}")
                    return action_dict
                
                logger.warning(f"Function call failed on attempt {attempt + 1}, will retry")
                
            except Exception as e:
                logger.error(f"Error in consensus attempt {attempt + 1}: {e}")
                
        # Final fallback to JSON parsing if all function call attempts failed
        logger.warning("All function call attempts failed, falling back to JSON parsing")
        try:
            # Use the last response and try JSON parsing
            consensus_text = (
                response.content if hasattr(response, "content") else str(response)
            )
            return self._robust_parse_action(consensus_text)
        except Exception as e:
            logger.error(f"Both function calling and JSON parsing failed: {e}")
            return {
                "action_type": "ask",
                "content": "Could you please provide more information to guide the diagnostic process?",
                "reasoning": f"Final fallback after {max_retries + 1} function call attempts and JSON parsing failure."
            }


def run_mai_dxo_demo(
    case_info: str = None,
    case_details: str = None,
    ground_truth: str = None,
) -> Dict[str, DiagnosisResult]:
    """
    Convenience function to run a quick demonstration of MAI-DxO variants.

    Args:
        case_info (str): Initial case information. Uses default if None.
        case_details (str): Full case details. Uses default if None.
        ground_truth (str): Ground truth diagnosis. Uses default if None.

    Returns:
        Dict[str, DiagnosisResult]: Results from different MAI-DxO variants
    """
    # Use default case if not provided
    if not case_info:
        case_info = (
            "A 29-year-old woman was admitted to the hospital because of sore throat and peritonsillar swelling "
            "and bleeding. Symptoms did not abate with antimicrobial therapy."
        )

    if not case_details:
        case_details = """
        Patient: 29-year-old female.
        History: Onset of sore throat 7 weeks prior to admission. Worsening right-sided pain and swelling.
        No fevers, headaches, or gastrointestinal symptoms. Past medical history is unremarkable.
        Physical Exam: Right peritonsillar mass, displacing the uvula. No other significant findings.
        Initial Labs: FBC, clotting studies normal.
        MRI Neck: Showed a large, enhancing mass in the right peritonsillar space.
        Biopsy (H&E): Infiltrative round-cell neoplasm with high nuclear-to-cytoplasmic ratio and frequent mitotic figures.
        Biopsy (Immunohistochemistry): Desmin and MyoD1 diffusely positive. Myogenin multifocally positive.
        Biopsy (FISH): No FOXO1 (13q14) rearrangements detected.
        Final Diagnosis from Pathology: Embryonal rhabdomyosarcoma of the pharynx.
        """

    if not ground_truth:
        ground_truth = "Embryonal rhabdomyosarcoma of the pharynx"

    results = {}

    # Test key variants
    variants = ["no_budget", "budgeted", "question_only"]

    for variant in variants:
        try:
            logger.info(f"Running MAI-DxO variant: {variant}")

            if variant == "budgeted":
                orchestrator = MaiDxOrchestrator.create_variant(
                    variant,
                    budget=3000,
                    model_name="gemini/gemini-2.5-flash",  # Fixed: Use valid model name
                    max_iterations=3,
                )
            else:
                orchestrator = MaiDxOrchestrator.create_variant(
                    variant,
                    model_name="gemini/gemini-2.5-flash",  # Fixed: Use valid model name
                    max_iterations=3,
                )

            result = orchestrator.run(
                case_info, case_details, ground_truth
            )
            results[variant] = result

        except Exception as e:
            logger.error(f"Error running variant {variant}: {e}")
            results[variant] = None

    return results


# if __name__ == "__main__":
#     # Example case inspired by the paper's Figure 1
#     initial_info = (
#         "A 29-year-old woman was admitted to the hospital because of sore throat and peritonsillar swelling "
#         "and bleeding. Symptoms did not abate with antimicrobial therapy."
#     )

#     full_case = """
#     Patient: 29-year-old female.
#     History: Onset of sore throat 7 weeks prior to admission. Worsening right-sided pain and swelling.
#     No fevers, headaches, or gastrointestinal symptoms. Past medical history is unremarkable. No history of smoking or significant alcohol use.
#     Physical Exam: Right peritonsillar mass, displacing the uvula. No other significant findings.
#     Initial Labs: FBC, clotting studies normal.
#     MRI Neck: Showed a large, enhancing mass in the right peritonsillar space.
#     Biopsy (H&E): Infiltrative round-cell neoplasm with high nuclear-to-cytoplasmic ratio and frequent mitotic figures.
#     Biopsy (Immunohistochemistry for Carcinoma): CD31, D2-40, CD34, ERG, GLUT-1, pan-cytokeratin, CD45, CD20, CD3 all negative. Ki-67: 60% nuclear positivity.
#     Biopsy (Immunohistochemistry for Rhabdomyosarcoma): Desmin and MyoD1 diffusely positive. Myogenin multifocally positive.
#     Biopsy (FISH): No FOXO1 (13q14) rearrangements detected.
#     Final Diagnosis from Pathology: Embryonal rhabdomyosarcoma of the pharynx.
#     """

#     ground_truth = "Embryonal rhabdomyosarcoma of the pharynx"

#     # --- Demonstrate Different MAI-DxO Variants ---
#     try:
#         print("\n" + "=" * 80)
#         print(
#             "    MAI DIAGNOSTIC ORCHESTRATOR (MAI-DxO) - SEQUENTIAL DIAGNOSIS BENCHMARK"
#         )
#         print(
#             "                    Implementation based on the NEJM Research Paper"
#         )
#         print("=" * 80)

#         # Test different variants as described in the paper
#         variants_to_test = [
#             (
#                 "no_budget",
#                 "Standard MAI-DxO with no budget constraints",
#             ),
#             ("budgeted", "Budget-constrained MAI-DxO ($3000 limit)"),
#             (
#                 "question_only",
#                 "Question-only variant (no diagnostic tests)",
#             ),
#         ]

#         results = {}

#         for variant_name, description in variants_to_test:
#             print(f"\n{'='*60}")
#             print(f"Testing Variant: {variant_name.upper()}")
#             print(f"Description: {description}")
#             print("=" * 60)

#             # Create the variant
#             if variant_name == "budgeted":
#                 orchestrator = MaiDxOrchestrator.create_variant(
#                     variant_name,
#                     budget=3000,
#                     model_name="gpt-4.1",  # Fixed: Use valid model name
#                     max_iterations=3,
#                 )
#             else:
#                 orchestrator = MaiDxOrchestrator.create_variant(
#                     variant_name,
#                     model_name="gpt-4.1",  # Fixed: Use valid model name
#                     max_iterations=3,
#                 )

#             # Run the diagnostic process
#             result = orchestrator.run(
#                 initial_case_info=initial_info,
#                 full_case_details=full_case,
#                 ground_truth_diagnosis=ground_truth,
#             )

#             results[variant_name] = result

#             # Display results
#             print(f"\nπŸš€ Final Diagnosis: {result.final_diagnosis}")
#             print(f"🎯 Ground Truth: {result.ground_truth}")
#             print(f"⭐ Accuracy Score: {result.accuracy_score}/5.0")
#             print(f"   Reasoning: {result.accuracy_reasoning}")
#             print(f"πŸ’° Total Cost: ${result.total_cost:,}")
#             print(f"πŸ”„ Iterations: {result.iterations}")
#             print(f"⏱️  Mode: {orchestrator.mode}")

#         # Demonstrate ensemble approach
#         print(f"\n{'='*60}")
#         print("Testing Variant: ENSEMBLE")
#         print(
#             "Description: Multiple independent runs with consensus aggregation"
#         )
#         print("=" * 60)

#         ensemble_orchestrator = MaiDxOrchestrator.create_variant(
#             "ensemble",
#             model_name="gpt-4.1",  # Fixed: Use valid model name
#             max_iterations=3,  # Shorter iterations for ensemble
#         )

#         ensemble_result = ensemble_orchestrator.run_ensemble(
#             initial_case_info=initial_info,
#             full_case_details=full_case,
#             ground_truth_diagnosis=ground_truth,
#             num_runs=2,  # Reduced for demo
#         )

#         results["ensemble"] = ensemble_result

#         print(
#             f"\nπŸš€ Ensemble Diagnosis: {ensemble_result.final_diagnosis}"
#         )
#         print(f"🎯 Ground Truth: {ensemble_result.ground_truth}")
#         print(
#             f"⭐ Ensemble Score: {ensemble_result.accuracy_score}/5.0"
#         )
#         print(
#             f"πŸ’° Total Ensemble Cost: ${ensemble_result.total_cost:,}"
#         )

#         # --- Summary Comparison ---
#         print(f"\n{'='*80}")
#         print("                           RESULTS SUMMARY")
#         print("=" * 80)
#         print(
#             f"{'Variant':<15} {'Diagnosis Match':<15} {'Score':<8} {'Cost':<12} {'Iterations':<12}"
#         )
#         print("-" * 80)

#         for variant_name, result in results.items():
#             match_status = (
#                 "βœ“ Match"
#                 if result.accuracy_score >= 4.0
#                 else "βœ— No Match"
#             )
#             print(
#                 f"{variant_name:<15} {match_status:<15} {result.accuracy_score:<8.1f} ${result.total_cost:<11,} {result.iterations:<12}"
#             )

#         print(f"\n{'='*80}")
#         print(
#             "Implementation successfully demonstrates the MAI-DxO framework"
#         )
#         print(
#             "as described in 'Sequential Diagnosis with Language Models' paper"
#         )
#         print("=" * 80)

#     except Exception as e:
#         logger.exception(
#             f"An error occurred during the diagnostic session: {e}"
#         )
#         print(f"\n❌ Error occurred: {e}")
#         print("Please check your model configuration and API keys.")