Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
from PIL import Image | |
import numpy as np | |
import pickle | |
import tensorflow as tf | |
from tensorflow.keras.preprocessing import image | |
from tensorflow.keras.layers import GlobalMaxPooling2D | |
from sklearn.neighbors import NearestNeighbors | |
from numpy.linalg import norm | |
from classification_models.tfkeras import Classifiers | |
# Function to gather file paths | |
def get_image_paths(): | |
filenames = [] | |
folder_names = sorted(['images1', 'images2', 'images3', 'images4', 'images5']) | |
for folder_name in folder_names: | |
for file in os.listdir(folder_name): | |
if not file.endswith('.lnk'): | |
filenames.append(os.path.join(folder_name, file)) | |
return filenames | |
# Gather image paths | |
filenames = get_image_paths() | |
# Load precomputed features (ensure this file is available) | |
feature_list = pickle.load(open('feature_list.pkl', 'rb')) | |
feature_list = np.array(feature_list) | |
# Get the ResNeXt model | |
ResNeXt50, preprocess_input = Classifiers.get('resnext50') | |
model = ResNeXt50(include_top=False, input_shape=(224, 224, 3), weights='imagenet') | |
model.trainable = False | |
model = tf.keras.Sequential([model, GlobalMaxPooling2D()]) | |
# App title | |
st.title('G Fashion') | |
def save_uploaded_file(uploaded_file): | |
try: | |
if not os.path.exists('uploads'): | |
os.makedirs('uploads') | |
with open(os.path.join('uploads', uploaded_file.name), 'wb') as f: | |
f.write(uploaded_file.getbuffer()) | |
return 1 | |
except Exception as e: | |
st.error(f"Error in file upload: {e}") | |
return 0 | |
def feature_extraction(img_path, model): | |
img = image.load_img(img_path, target_size=(224, 224)) | |
img_array = image.img_to_array(img) | |
expanded_img_array = np.expand_dims(img_array, axis=0) | |
preprocessed_img = preprocess_input(expanded_img_array) | |
result = model.predict(preprocessed_img).flatten() | |
normalized_result = result / norm(result) | |
return normalized_result | |
def recommend(features, feature_list): | |
neighbors = NearestNeighbors(n_neighbors=6, algorithm='brute', metric='cosine') | |
neighbors.fit(feature_list) | |
distances, indices = neighbors.kneighbors([features]) | |
return indices | |
# File upload | |
uploaded_file = st.file_uploader("Choose an image") | |
if uploaded_file is not None: | |
if save_uploaded_file(uploaded_file): | |
display_image = Image.open(uploaded_file) | |
st.image(display_image) | |
features = feature_extraction(os.path.join("uploads", uploaded_file.name), model) | |
indices = recommend(features, feature_list) | |
col1, col2, col3, col4, col5 = st.columns(5) | |
st.write(f"File path: {filenames[indices[0][0]]}") | |
with col1: | |
st.image(r'{}'.format(filenames[indices[0][0]])) | |
with col2: | |
st.image(r'{}'.format(filenames[indices[0][1]])) | |
with col3: | |
st.image(r'{}'.format(filenames[indices[0][2]])) | |
with col4: | |
st.image(r'{}'.format(filenames[indices[0][3]])) | |
with col5: | |
st.image(r'{}'.format(filenames[indices[0][4]])) | |
else: | |
st.header("Some error occured in file upload") | |