Spaces:
Build error
Build error
File size: 22,525 Bytes
4e4961e fdc056d 4e4961e fdc056d 4e4961e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 |
# Developer Guide
This guide provides comprehensive instructions for extending the Audio Translation System with new providers and contributing to the codebase.
## Table of Contents
- [Architecture Overview](#architecture-overview)
- [Adding New TTS Providers](#adding-new-tts-providers)
- [Adding New STT Providers](#adding-new-stt-providers)
- [Adding New Translation Providers](#adding-new-translation-providers)
- [Testing Guidelines](#testing-guidelines)
- [Code Style and Standards](#code-style-and-standards)
- [Debugging and Troubleshooting](#debugging-and-troubleshooting)
- [Performance Considerations](#performance-considerations)
## Architecture Overview
The system follows Domain-Driven Design (DDD) principles with clear separation of concerns:
```
src/
βββ domain/ # Core business logic
β βββ interfaces/ # Service contracts (ports)
β βββ models/ # Domain entities and value objects
β βββ services/ # Domain services
β βββ exceptions.py # Domain-specific exceptions
βββ application/ # Use case orchestration
β βββ services/ # Application services
β βββ dtos/ # Data transfer objects
β βββ error_handling/ # Application error handling
βββ infrastructure/ # External service implementations
β βββ tts/ # TTS provider implementations
β βββ stt/ # STT provider implementations
β βββ translation/ # Translation service implementations
β βββ base/ # Provider base classes
β βββ config/ # Configuration and DI container
βββ presentation/ # UI layer (app.py)
```
### Key Design Patterns
1. **Provider Pattern**: Pluggable implementations for different services
2. **Factory Pattern**: Provider creation with fallback logic
3. **Dependency Injection**: Loose coupling between components
4. **Repository Pattern**: Data access abstraction
5. **Strategy Pattern**: Runtime algorithm selection
## Adding New TTS Providers
### Step 1: Implement the Provider Class
Create a new provider class that inherits from `TTSProviderBase`:
```python
# src/infrastructure/tts/my_tts_provider.py
import logging
from typing import Iterator, List
from ..base.tts_provider_base import TTSProviderBase
from ...domain.models.speech_synthesis_request import SpeechSynthesisRequest
from ...domain.exceptions import SpeechSynthesisException
logger = logging.getLogger(__name__)
class MyTTSProvider(TTSProviderBase):
"""Custom TTS provider implementation."""
def __init__(self, api_key: str = None, **kwargs):
"""Initialize the TTS provider.
Args:
api_key: Optional API key for cloud-based services
**kwargs: Additional provider-specific configuration
"""
super().__init__(
provider_name="my_tts",
supported_languages=["en", "zh", "es", "fr"]
)
self.api_key = api_key
self._initialize_provider()
def _initialize_provider(self):
"""Initialize provider-specific resources."""
try:
# Initialize your TTS engine/model here
# Example: self.engine = MyTTSEngine(api_key=self.api_key)
pass
except Exception as e:
logger.error(f"Failed to initialize {self.provider_name}: {e}")
raise SpeechSynthesisException(f"Provider initialization failed: {e}")
def is_available(self) -> bool:
"""Check if the provider is available and ready to use."""
try:
# Check if dependencies are installed
# Check if models are loaded
# Check if API is accessible (for cloud services)
return True # Replace with actual availability check
except Exception:
return False
def get_available_voices(self) -> List[str]:
"""Get list of available voices for this provider."""
# Return actual voice IDs supported by your provider
return ["voice1", "voice2", "voice3"]
def _generate_audio(self, request: SpeechSynthesisRequest) -> tuple[bytes, int]:
"""Generate audio data from synthesis request.
Args:
request: The speech synthesis request
Returns:
tuple: (audio_data_bytes, sample_rate)
"""
try:
text = request.text_content.text
voice_id = request.voice_settings.voice_id
speed = request.voice_settings.speed
# Implement your TTS synthesis logic here
# Example:
# audio_data = self.engine.synthesize(
# text=text,
# voice=voice_id,
# speed=speed
# )
# Return audio data and sample rate
audio_data = b"dummy_audio_data" # Replace with actual synthesis
sample_rate = 22050 # Replace with actual sample rate
return audio_data, sample_rate
except Exception as e:
self._handle_provider_error(e, "audio generation")
def _generate_audio_stream(self, request: SpeechSynthesisRequest) -> Iterator[tuple[bytes, int, bool]]:
"""Generate audio data stream from synthesis request.
Args:
request: The speech synthesis request
Yields:
tuple: (audio_data_bytes, sample_rate, is_final)
"""
try:
# Implement streaming synthesis if supported
# For non-streaming providers, you can yield the complete audio as a single chunk
audio_data, sample_rate = self._generate_audio(request)
yield audio_data, sample_rate, True
except Exception as e:
self._handle_provider_error(e, "streaming audio generation")
```
### Step 2: Register the Provider
Add your provider to the factory registration:
```python
# src/infrastructure/tts/provider_factory.py
def _register_default_providers(self):
"""Register all available TTS providers."""
# ... existing providers ...
# Try to register your custom provider
try:
from .my_tts_provider import MyTTSProvider
self._providers['my_tts'] = MyTTSProvider
logger.info("Registered MyTTS provider")
except ImportError as e:
logger.info(f"MyTTS provider not available: {e}")
```
### Step 3: Add Configuration Support
Update the configuration to include your provider:
```python
# src/infrastructure/config/app_config.py
class AppConfig:
# ... existing configuration ...
# TTS Provider Configuration
TTS_PROVIDERS = os.getenv('TTS_PROVIDERS', 'kokoro,dia,cosyvoice2,my_tts,dummy').split(',')
# Provider-specific settings
MY_TTS_API_KEY = os.getenv('MY_TTS_API_KEY')
MY_TTS_MODEL = os.getenv('MY_TTS_MODEL', 'default')
```
### Step 4: Add Tests
Create comprehensive tests for your provider:
```python
# tests/unit/infrastructure/tts/test_my_tts_provider.py
import pytest
from unittest.mock import Mock, patch
from src.infrastructure.tts.my_tts_provider import MyTTSProvider
from src.domain.models.speech_synthesis_request import SpeechSynthesisRequest
from src.domain.models.text_content import TextContent
from src.domain.models.voice_settings import VoiceSettings
from src.domain.exceptions import SpeechSynthesisException
class TestMyTTSProvider:
"""Test suite for MyTTS provider."""
@pytest.fixture
def provider(self):
"""Create a test provider instance."""
return MyTTSProvider(api_key="test_key")
@pytest.fixture
def synthesis_request(self):
"""Create a test synthesis request."""
text_content = TextContent(text="Hello world", language="en")
voice_settings = VoiceSettings(voice_id="voice1", speed=1.0)
return SpeechSynthesisRequest(
text_content=text_content,
voice_settings=voice_settings
)
def test_provider_initialization(self, provider):
"""Test provider initializes correctly."""
assert provider.provider_name == "my_tts"
assert "en" in provider.supported_languages
assert provider.is_available()
def test_get_available_voices(self, provider):
"""Test voice listing."""
voices = provider.get_available_voices()
assert isinstance(voices, list)
assert len(voices) > 0
assert "voice1" in voices
def test_synthesize_success(self, provider, synthesis_request):
"""Test successful synthesis."""
with patch.object(provider, '_generate_audio') as mock_generate:
mock_generate.return_value = (b"audio_data", 22050)
result = provider.synthesize(synthesis_request)
assert result.data == b"audio_data"
assert result.format == "wav"
assert result.sample_rate == 22050
mock_generate.assert_called_once_with(synthesis_request)
def test_synthesize_failure(self, provider, synthesis_request):
"""Test synthesis failure handling."""
with patch.object(provider, '_generate_audio') as mock_generate:
mock_generate.side_effect = Exception("Synthesis failed")
with pytest.raises(SpeechSynthesisException):
provider.synthesize(synthesis_request)
def test_synthesize_stream(self, provider, synthesis_request):
"""Test streaming synthesis."""
chunks = list(provider.synthesize_stream(synthesis_request))
assert len(chunks) > 0
assert chunks[-1].is_final # Last chunk should be marked as final
# Verify chunk structure
for chunk in chunks:
assert hasattr(chunk, 'data')
assert hasattr(chunk, 'sample_rate')
assert hasattr(chunk, 'is_final')
```
### Step 5: Add Integration Tests
```python
# tests/integration/test_my_tts_integration.py
import pytest
from src.infrastructure.config.container_setup import initialize_global_container
from src.infrastructure.tts.provider_factory import TTSProviderFactory
from src.domain.models.speech_synthesis_request import SpeechSynthesisRequest
from src.domain.models.text_content import TextContent
from src.domain.models.voice_settings import VoiceSettings
@pytest.mark.integration
class TestMyTTSIntegration:
"""Integration tests for MyTTS provider."""
def test_provider_factory_integration(self):
"""Test provider works with factory."""
factory = TTSProviderFactory()
if 'my_tts' in factory.get_available_providers():
provider = factory.create_provider('my_tts')
assert provider.is_available()
assert len(provider.get_available_voices()) > 0
def test_end_to_end_synthesis(self):
"""Test complete synthesis workflow."""
container = initialize_global_container()
factory = container.resolve(TTSProviderFactory)
if 'my_tts' in factory.get_available_providers():
provider = factory.create_provider('my_tts')
# Create synthesis request
text_content = TextContent(text="Integration test", language="en")
voice_settings = VoiceSettings(voice_id="voice1", speed=1.0)
request = SpeechSynthesisRequest(
text_content=text_content,
voice_settings=voice_settings
)
# Synthesize audio
result = provider.synthesize(request)
assert result.data is not None
assert result.duration > 0
assert result.sample_rate > 0
```
## Adding New STT Providers
### Step 1: Implement the Provider Class
```python
# src/infrastructure/stt/my_stt_provider.py
import logging
from typing import List
from ..base.stt_provider_base import STTProviderBase
from ...domain.models.audio_content import AudioContent
from ...domain.models.text_content import TextContent
from ...domain.exceptions import SpeechRecognitionException
logger = logging.getLogger(__name__)
class MySTTProvider(STTProviderBase):
"""Custom STT provider implementation."""
def __init__(self, model_path: str = None, **kwargs):
"""Initialize the STT provider.
Args:
model_path: Path to the STT model
**kwargs: Additional provider-specific configuration
"""
super().__init__(
provider_name="my_stt",
supported_languages=["en", "zh", "es", "fr"],
supported_models=["my_stt_small", "my_stt_large"]
)
self.model_path = model_path
self._initialize_provider()
def _initialize_provider(self):
"""Initialize provider-specific resources."""
try:
# Initialize your STT engine/model here
# Example: self.model = MySTTModel.load(self.model_path)
pass
except Exception as e:
logger.error(f"Failed to initialize {self.provider_name}: {e}")
raise SpeechRecognitionException(f"Provider initialization failed: {e}")
def is_available(self) -> bool:
"""Check if the provider is available."""
try:
# Check dependencies, model availability, etc.
return True # Replace with actual check
except Exception:
return False
def get_supported_models(self) -> List[str]:
"""Get list of supported models."""
return self.supported_models
def _transcribe_audio(self, audio: AudioContent, model: str) -> tuple[str, float, dict]:
"""Transcribe audio using the specified model.
Args:
audio: Audio content to transcribe
model: Model identifier to use
Returns:
tuple: (transcribed_text, confidence_score, metadata)
"""
try:
# Implement your STT logic here
# Example:
# result = self.model.transcribe(
# audio_data=audio.data,
# sample_rate=audio.sample_rate,
# model=model
# )
# Return transcription results
text = "Transcribed text" # Replace with actual transcription
confidence = 0.95 # Replace with actual confidence
metadata = {
"model_used": model,
"processing_time": 1.5,
"language_detected": "en"
}
return text, confidence, metadata
except Exception as e:
self._handle_provider_error(e, "transcription")
```
### Step 2: Register and Test
Follow similar steps as TTS providers for registration, configuration, and testing.
## Adding New Translation Providers
### Step 1: Implement the Provider Class
```python
# src/infrastructure/translation/my_translation_provider.py
import logging
from typing import List, Dict
from ..base.translation_provider_base import TranslationProviderBase
from ...domain.models.translation_request import TranslationRequest
from ...domain.models.text_content import TextContent
from ...domain.exceptions import TranslationFailedException
logger = logging.getLogger(__name__)
class MyTranslationProvider(TranslationProviderBase):
"""Custom translation provider implementation."""
def __init__(self, api_key: str = None, **kwargs):
"""Initialize the translation provider."""
super().__init__(
provider_name="my_translation",
supported_languages=["en", "zh", "es", "fr", "de", "ja"]
)
self.api_key = api_key
self._initialize_provider()
def _initialize_provider(self):
"""Initialize provider-specific resources."""
try:
# Initialize your translation engine/model here
pass
except Exception as e:
logger.error(f"Failed to initialize {self.provider_name}: {e}")
raise TranslationFailedException(f"Provider initialization failed: {e}")
def is_available(self) -> bool:
"""Check if the provider is available."""
try:
# Check dependencies, API connectivity, etc.
return True # Replace with actual check
except Exception:
return False
def get_supported_language_pairs(self) -> List[tuple[str, str]]:
"""Get supported language pairs."""
# Return list of (source_lang, target_lang) tuples
pairs = []
for source in self.supported_languages:
for target in self.supported_languages:
if source != target:
pairs.append((source, target))
return pairs
def _translate_text(self, request: TranslationRequest) -> tuple[str, float, dict]:
"""Translate text using the provider.
Args:
request: Translation request
Returns:
tuple: (translated_text, confidence_score, metadata)
"""
try:
source_text = request.text_content.text
source_lang = request.source_language or request.text_content.language
target_lang = request.target_language
# Implement your translation logic here
# Example:
# result = self.translator.translate(
# text=source_text,
# source_lang=source_lang,
# target_lang=target_lang
# )
# Return translation results
translated_text = f"Translated: {source_text}" # Replace with actual translation
confidence = 0.92 # Replace with actual confidence
metadata = {
"source_language_detected": source_lang,
"target_language": target_lang,
"processing_time": 0.5,
"model_used": "my_translation_model"
}
return translated_text, confidence, metadata
except Exception as e:
self._handle_provider_error(e, "translation")
```
## Testing Guidelines
### Unit Testing
- Test each provider in isolation using mocks
- Cover success and failure scenarios
- Test edge cases (empty input, invalid parameters)
- Verify error handling and exception propagation
### Integration Testing
- Test provider integration with factories
- Test complete pipeline workflows
- Test fallback mechanisms
- Test with real external services (when available)
### Performance Testing
- Measure processing times for different input sizes
- Test memory usage and resource cleanup
- Test concurrent processing capabilities
- Benchmark against existing providers
### Test Structure
```
tests/
βββ unit/
β βββ domain/
β βββ application/
β βββ infrastructure/
β βββ tts/
β βββ stt/
β βββ translation/
βββ integration/
β βββ test_complete_pipeline.py
β βββ test_provider_fallback.py
β βββ test_error_recovery.py
βββ performance/
βββ test_processing_speed.py
βββ test_memory_usage.py
βββ test_concurrent_processing.py
```
## Code Style and Standards
### Python Style Guide
- Follow PEP 8 for code formatting
- Use type hints for all public methods
- Write comprehensive docstrings (Google style)
- Use meaningful variable and function names
- Keep functions focused and small (< 50 lines)
### Documentation Standards
- Document all public interfaces
- Include usage examples in docstrings
- Explain complex algorithms and business logic
- Keep documentation up-to-date with code changes
### Error Handling
- Use domain-specific exceptions
- Provide detailed error messages
- Log errors with appropriate levels
- Implement graceful degradation where possible
### Logging
```python
import logging
logger = logging.getLogger(__name__)
# Use appropriate log levels
logger.info("Detailed debugging information")
logger.info("General information about program execution")
logger.warning("Something unexpected happened")
logger.error("A serious error occurred")
logger.critical("A very serious error occurred")
```
## Debugging and Troubleshooting
### Common Issues
1. **Provider Not Available**
- Check dependencies are installed
- Verify configuration settings
- Check logs for initialization errors
2. **Poor Quality Output**
- Verify input audio quality
- Check model parameters
- Review provider-specific settings
3. **Performance Issues**
- Profile code execution
- Check memory usage
- Optimize audio processing pipeline
### Debugging Tools
- Use Python debugger (pdb) for step-through debugging
- Enable detailed logging for troubleshooting
- Use profiling tools (cProfile, memory_profiler)
- Monitor system resources during processing
### Logging Configuration
```python
# Enable debug logging for development
import logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("debug.log"),
logging.StreamHandler()
]
)
```
## Performance Considerations
### Optimization Strategies
1. **Audio Processing**
- Use appropriate sample rates
- Implement streaming where possible
- Cache processed results
- Optimize memory usage
2. **Model Loading**
- Load models once and reuse
- Use lazy loading for optional providers
- Implement model caching strategies
3. **Concurrent Processing**
- Use async/await for I/O operations
- Implement thread-safe providers
- Consider multiprocessing for CPU-intensive tasks
### Memory Management
- Clean up temporary files
- Release model resources when not needed
- Monitor memory usage in long-running processes
- Implement resource pooling for expensive operations
### Monitoring and Metrics
- Track processing times
- Monitor error rates
- Measure resource utilization
- Implement health checks
## Contributing Guidelines
### Development Workflow
1. Fork the repository
2. Create a feature branch
3. Implement changes with tests
4. Run the full test suite
5. Submit a pull request
### Code Review Process
- All changes require code review
- Tests must pass before merging
- Documentation must be updated
- Performance impact should be assessed
### Release Process
- Follow semantic versioning
- Update changelog
- Tag releases appropriately
- Deploy to staging before production
---
For questions or support, please refer to the project documentation or open an issue in the repository. |