teachingAssistant / src /domain /interfaces /audio_processing.py
Michael Hu
Add documentation and final validation
4e4961e
"""
Audio processing service interface.
This module defines the core interface for audio processing pipeline orchestration.
The interface follows Domain-Driven Design principles, providing a clean contract
for the complete audio translation workflow.
Example:
```python
from src.domain.interfaces.audio_processing import IAudioProcessingService
from src.domain.models.audio_content import AudioContent
from src.domain.models.voice_settings import VoiceSettings
# Get service implementation from DI container
audio_service = container.resolve(IAudioProcessingService)
# Process audio through complete pipeline
result = audio_service.process_audio_pipeline(
audio=audio_content,
target_language="zh",
voice_settings=voice_settings
)
```
"""
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from ..models.audio_content import AudioContent
from ..models.voice_settings import VoiceSettings
from ..models.processing_result import ProcessingResult
class IAudioProcessingService(ABC):
"""
Interface for audio processing pipeline orchestration.
This interface defines the contract for the complete audio translation pipeline,
coordinating Speech-to-Text, Translation, and Text-to-Speech services to provide
end-to-end audio translation functionality.
The interface is designed to be:
- Provider-agnostic: Works with any STT/Translation/TTS implementation
- Error-resilient: Handles failures gracefully with appropriate exceptions
- Observable: Provides detailed processing results and metadata
- Testable: Easy to mock for unit testing
Implementations should handle:
- Provider selection and fallback logic
- Error handling and recovery
- Performance monitoring and logging
- Resource cleanup and management
"""
@abstractmethod
def process_audio_pipeline(
self,
audio: 'AudioContent',
target_language: str,
voice_settings: 'VoiceSettings'
) -> 'ProcessingResult':
"""
Process audio through the complete pipeline: STT -> Translation -> TTS.
This method orchestrates the complete audio translation workflow:
1. Speech Recognition: Convert audio to text
2. Translation: Translate text to target language (if needed)
3. Speech Synthesis: Convert translated text back to audio
The implementation should:
- Validate input parameters
- Handle provider failures with fallback mechanisms
- Provide detailed error information on failure
- Clean up temporary resources
- Log processing steps for observability
Args:
audio: The input audio content to process. Must be a valid AudioContent
instance with supported format and reasonable duration.
target_language: The target language code for translation (e.g., 'zh', 'es', 'fr').
Must be supported by the translation provider.
voice_settings: Voice configuration for TTS synthesis including voice ID,
speed, and language preferences.
Returns:
ProcessingResult: Comprehensive result containing:
- success: Boolean indicating overall success
- original_text: Transcribed text from STT (if successful)
- translated_text: Translated text (if translation was performed)
- audio_output: Generated audio content (if TTS was successful)
- processing_time: Total processing duration in seconds
- error_message: Detailed error description (if failed)
- metadata: Additional processing information and metrics
Raises:
AudioProcessingException: If any step in the pipeline fails and cannot
be recovered through fallback mechanisms.
ValueError: If input parameters are invalid or unsupported.
Example:
```python
# Create audio content from file
with open("input.wav", "rb") as f:
audio = AudioContent(
data=f.read(),
format="wav",
sample_rate=16000,
duration=10.5
)
# Configure voice settings
voice_settings = VoiceSettings(
voice_id="kokoro",
speed=1.0,
language="zh"
)
# Process through pipeline
result = service.process_audio_pipeline(
audio=audio,
target_language="zh",
voice_settings=voice_settings
)
if result.success:
print(f"Original: {result.original_text}")
print(f"Translated: {result.translated_text}")
# Save output audio
with open("output.wav", "wb") as f:
f.write(result.audio_output.data)
else:
print(f"Processing failed: {result.error_message}")
```
"""
pass