Spaces:
Sleeping
Sleeping
File size: 15,320 Bytes
6f8def7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
# coding: utf-8
# Copyright (c) 2025 inclusionAI.
import abc
import asyncio
import json
import os
from typing import Optional
from aworld.config import ConfigDict
from aworld.core.memory import MemoryBase, MemoryItem, MemoryStore, MemoryConfig
from aworld.logs.util import logger
from aworld.models.llm import get_llm_model, acall_llm_model
class InMemoryMemoryStore(MemoryStore):
def __init__(self):
self.memory_items = []
def add(self, memory_item: MemoryItem):
self.memory_items.append(memory_item)
def get(self, memory_id) -> Optional[MemoryItem]:
return next((item for item in self.memory_items if item.id == memory_id), None)
def get_first(self, filters: dict = None) -> Optional[MemoryItem]:
"""Get the first memory item."""
filtered_items = self.get_all(filters)
if len(filtered_items) == 0:
return None
return filtered_items[0]
def total_rounds(self, filters: dict = None) -> int:
"""Get the total number of rounds."""
return len(self.get_all(filters))
def get_all(self, filters: dict = None) -> list[MemoryItem]:
"""Filter memory items based on filters."""
filtered_items = [item for item in self.memory_items if self._filter_memory_item(item, filters)]
return filtered_items
def _filter_memory_item(self, memory_item: MemoryItem, filters: dict = None) -> bool:
if memory_item.deleted:
return False
if filters is None:
return True
if filters.get('user_id') is not None:
if memory_item.metadata.get('user_id') is None:
return False
if memory_item.metadata.get('user_id') != filters['user_id']:
return False
if filters.get('agent_id') is not None:
if memory_item.metadata.get('agent_id') is None:
return False
if memory_item.metadata.get('agent_id') != filters['agent_id']:
return False
if filters.get('task_id') is not None:
if memory_item.metadata.get('task_id') is None:
return False
if memory_item.metadata.get('task_id') != filters['task_id']:
return False
if filters.get('session_id') is not None:
if memory_item.metadata.get('session_id') is None:
return False
if memory_item.metadata.get('session_id') != filters['session_id']:
return False
if filters.get('memory_type') is not None:
if memory_item.memory_type is None:
return False
if memory_item.memory_type != filters['memory_type']:
return False
return True
def get_last_n(self, last_rounds, filters: dict = None) -> list[MemoryItem]:
return self.memory_items[-last_rounds:] # Get the last n items
def update(self, memory_item: MemoryItem):
for index, item in enumerate(self.memory_items):
if item.id == memory_item.id:
self.memory_items[index] = memory_item # Update the item in the list
break
def delete(self, memory_id):
exists = self.get(memory_id)
if exists:
exists.deleted = True
def history(self, memory_id) -> list[MemoryItem] | None:
exists = self.get(memory_id)
if exists:
return exists.histories
return None
class MemoryFactory:
@classmethod
def from_config(cls, config: MemoryConfig) -> "MemoryBase":
"""
Initialize a Memory instance from a configuration dictionary.
Args:
config (dict): Configuration dictionary.
Returns:
InMemoryStorageMemory: Memory instance.
"""
if config.provider == "inmemory":
return InMemoryStorageMemory(
memory_store=InMemoryMemoryStore(),
config=config,
enable_summary=config.enable_summary,
summary_rounds=config.summary_rounds
)
elif config.provider == "mem0":
from aworld.memory.mem0.mem0_memory import Mem0Memory
return Mem0Memory(
memory_store=InMemoryMemoryStore(),
config=config
)
else:
raise ValueError(f"Invalid memory store type: {config.get('memory_store')}")
class Memory(MemoryBase):
__metaclass__ = abc.ABCMeta
def __init__(self, memory_store: MemoryStore, config: MemoryConfig, **kwargs):
self.memory_store = memory_store
self.config = config
self._llm_instance = None
@property
def default_llm_instance(self):
def get_env(key: str, default_key: str, default_val: object=None):
return os.getenv(key) if os.getenv(key) else os.getenv(default_key, default_val)
if not self._llm_instance:
self._llm_instance = get_llm_model(conf=ConfigDict({
"llm_model_name": get_env("MEM_LLM_MODEL_NAME", "LLM_MODEL_NAME"),
"llm_api_key": get_env("MEM_LLM_API_KEY", "LLM_MODEL_NAME") ,
"llm_base_url": get_env("MEM_LLM_BASE_URL", 'LLM_BASE_URL'),
"temperature": get_env("MEM_LLM_TEMPERATURE", "MEM_LLM_TEMPERATURE", 1.0),
"streaming": 'False'
}))
return self._llm_instance
def _build_history_context(self, messages) -> str:
"""Build the history context string from a list of messages.
Args:
messages: List of message objects with 'role', 'content', and optional 'tool_calls'.
Returns:
Concatenated context string.
"""
history_context = ""
for item in messages:
history_context += (f"\n\n{item['role']}: {item['content']}, "
f"{'tool_calls:' + json.dumps(item['tool_calls']) if 'tool_calls' in item and item['tool_calls'] else ''}")
return history_context
async def _call_llm_summary(self, summary_messages: list) -> str:
"""Call LLM to generate summary and log the process.
Args:
summary_messages: List of messages to send to LLM.
Returns:
Summary content string.
"""
logger.info(f"🤔 [Summary] Creating summary memory, history messages: {summary_messages}")
llm_response = await acall_llm_model(
self.default_llm_instance,
messages=summary_messages,
stream=False
)
logger.info(f'🤔 [Summary] summary_content: result is {llm_response.content[:400] + "...truncated"} ')
return llm_response.content
def _get_parsed_history_messages(self, history_items: list[MemoryItem]) -> list[dict]:
"""Get and format history messages for summary.
Args:
history_items: list[MemoryItem]
Returns:
List of parsed message dicts
"""
parsed_messages = [
{
'role': message.metadata['role'],
'content': message.content,
'tool_calls': message.metadata.get('tool_calls') if message.metadata.get('tool_calls') else None
}
for message in history_items]
return parsed_messages
async def async_gen_multi_rounds_summary(self, to_be_summary: list[MemoryItem]) -> str:
logger.info(
f"🤔 [Summary] Creating summary memory, history messages")
if len(to_be_summary) == 0:
return ""
parsed_messages = self._get_parsed_history_messages(to_be_summary)
history_context = self._build_history_context(parsed_messages)
summary_messages = [
{"role": "user", "content": self.config.summary_prompt.format(context=history_context)}
]
return await self._call_llm_summary(summary_messages)
async def async_gen_summary(self, filters: dict, last_rounds: int) -> str:
"""A tool for summarizing the conversation history."""
logger.info(f"🤔 [Summary] Creating summary memory, history messages [filters -> {filters}, "
f"last_rounds -> {last_rounds}]")
history_items = self.memory_store.get_last_n(last_rounds, filters=filters)
if len(history_items) == 0:
return ""
parsed_messages = self._get_parsed_history_messages(history_items)
history_context = self._build_history_context(parsed_messages)
summary_messages = [
{"role": "user", "content": self.config.summary_prompt.format(context=history_context)}
]
return await self._call_llm_summary(summary_messages)
async def async_gen_cur_round_summary(self, to_be_summary: MemoryItem, filters: dict, last_rounds: int) -> str:
if self.config.enable_summary and len(to_be_summary.content) < self.config.summary_single_context_length:
return to_be_summary.content
logger.info(f"🤔 [Summary] Creating summary memory, history messages [filters -> {filters}, "
f"last_rounds -> {last_rounds}]: to be summary content is {to_be_summary.content}")
history_items = self.memory_store.get_last_n(last_rounds, filters=filters)
if len(history_items) == 0:
return ""
parsed_messages = self._get_parsed_history_messages(history_items)
# Append the to_be_summary
parsed_messages.append({
"role": to_be_summary.metadata['role'],
"content": f"{to_be_summary.content}",
'tool_call_id': to_be_summary.metadata['tool_call_id'],
})
history_context = self._build_history_context(parsed_messages)
summary_messages = [
{"role": "user", "content": self.config.summary_prompt.format(context=history_context)}
]
return await self._call_llm_summary(summary_messages)
def search(self, query, limit=100, filters=None) -> Optional[list[MemoryItem]]:
pass
class InMemoryStorageMemory(Memory):
def __init__(self, memory_store: MemoryStore, config: MemoryConfig, enable_summary: bool = True, **kwargs):
super().__init__(memory_store=memory_store, config=config)
self.summary = {}
self.summary_rounds = self.config.summary_rounds
self.enable_summary = self.config.enable_summary
def add(self, memory_item: MemoryItem, filters: dict = None):
self.memory_store.add(memory_item)
# Check if we need to create or update summary
if self.enable_summary:
total_rounds = len(self.memory_store.get_all())
if total_rounds > self.summary_rounds:
self._create_or_update_summary(total_rounds)
def _create_or_update_summary(self, total_rounds: int):
"""Create or update summary based on current total rounds.
Args:
total_rounds (int): Total number of rounds.
"""
summary_index = int(total_rounds / self.summary_rounds)
start = (summary_index - 1) * self.summary_rounds
end = total_rounds - self.summary_rounds
# Ensure we have valid start and end indices
start = max(0, start)
end = max(start, end)
# Get the memory items to summarize
items_to_summarize = self.memory_store.get_all()[start:end + 1]
print(f"{total_rounds}start: {start}, end: {end},")
# Create summary content
summary_content = self._summarize_items(items_to_summarize, summary_index)
# Create the range key
range_key = f"{start}_{end}"
# Check if summary for this range already exists
if range_key in self.summary:
# Update existing summary
self.summary[range_key].content = summary_content
self.summary[range_key].updated_at = None # This will update the timestamp
else:
# Create new summary
summary_item = MemoryItem(
content=summary_content,
metadata={
"summary_index": summary_index,
"start_round": start,
"end_round": end,
"role": "system"
},
tags=["summary"]
)
self.summary[range_key] = summary_item
def _summarize_items(self, items: list[MemoryItem], summary_index: int) -> str:
"""Summarize a list of memory items.
Args:
items (list[MemoryItem]): List of memory items to summarize.
summary_index (int): Summary index.
Returns:
str: Summary content.
"""
# This is a placeholder. In a real implementation, you might use an LLM or other method
# to create a meaningful summary of the content
return asyncio.run(self.async_gen_multi_rounds_summary(items))
def update(self, memory_item: MemoryItem):
self.memory_store.update(memory_item)
def delete(self, memory_id):
self.memory_store.delete(memory_id)
def get(self, memory_id) -> Optional[MemoryItem]:
return self.memory_store.get(memory_id)
def get_all(self, filters: dict = None) -> list[MemoryItem]:
return self.memory_store.get_all()
def get_last_n(self, last_rounds, add_first_message=True, filters: dict = None) -> list[MemoryItem]:
"""Get last n memories.
Args:
last_rounds (int): Number of memories to retrieve.
add_first_message (bool):
Returns:
list[MemoryItem]: List of latest memories.
"""
memory_items = self.memory_store.get_last_n(last_rounds)
while len(memory_items) > 0 and memory_items[0].metadata and "tool_call_id" in memory_items[0].metadata and \
memory_items[0].metadata["tool_call_id"]:
last_rounds = last_rounds + 1
memory_items = self.memory_store.get_last_n(last_rounds)
# If summary is disabled or no summaries exist, return just the last_n_items
if not self.enable_summary or not self.summary:
return memory_items
# Calculate the range for relevant summaries
all_items = self.memory_store.get_all()
total_items = len(all_items)
end_index = total_items - last_rounds
# Get complete summaries
result = []
complete_summary_count = end_index // self.summary_rounds
# Get complete summaries
for i in range(complete_summary_count):
range_key = f"{i * self.summary_rounds}_{(i + 1) * self.summary_rounds - 1}"
if range_key in self.summary:
result.append(self.summary[range_key])
# Get the last incomplete summary if exists
remaining_items = end_index % self.summary_rounds
if remaining_items > 0:
start = complete_summary_count * self.summary_rounds
range_key = f"{start}_{end_index - 1}"
if range_key in self.summary:
result.append(self.summary[range_key])
# Add the last n items
result.extend(memory_items)
# Add first user input
if add_first_message and last_rounds < self.memory_store.total_rounds():
memory_items.insert(0, self.memory_store.get_first())
return result
|