Spaces:
Sleeping
Sleeping
File size: 11,581 Bytes
ae64487 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
# AWorld LLM Interface
A unified interface for interacting with various LLM providers through a consistent API.
## Features
- Unified API for multiple LLM providers. Currently, only OpenAI and Anthropic are supported.
- Synchronous and asynchronous calls with optional initialization control
- Streaming responses support
- Tool calls support
- Unified ModelResponse object for all provider responses
- Easy extension with custom providers
## Supported Providers
- `openai`: Models supporting OpenAI API protocol (OpenAI, compatible models)
- `anthropic`: Models supporting Anthropic API protocol (Claude models)
- `azure_openai`: Azure OpenAI service
## Basic Usage
### Quick Start
```python
from aworld.config.conf import AgentConfig
from aworld.models.llm import get_llm_model, call_llm_model, acall_llm_model
# Create configuration
config = AgentConfig(
llm_provider="openai", # Options: "openai", "anthropic", "azure_openai"
llm_model_name="gpt-4o",
llm_temperature=0.0,
llm_api_key="your_api_key",
llm_base_url="your_llm_server_address"
)
# Initialize the model
model = get_llm_model(config)
# Prepare messages
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Explain Python in three sentences."}
]
# Get response
response = model.completion(messages)
print(response.content) # Access content directly from ModelResponse
```
### Using call_llm_model (Recommended)
```python
from aworld.models.llm import get_llm_model, call_llm_model
# Initialize model
model = get_llm_model(
llm_provider="openai",
model_name="gpt-4o",
api_key="your_api_key",
base_url="https://api.openai.com/v1"
)
# Prepare messages
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Write a short poem about programming."}
]
# Using call_llm_model - returns ModelResponse object
response = call_llm_model(model, messages)
print(response.content) # Access content directly from ModelResponse
# Stream response with call_llm_model
for chunk in call_llm_model(model, messages, temperature=0.7, stream=True):
if chunk.content:
print(chunk.content, end="", flush=True)
```
### Asynchronous Calls with acall_llm_model
```python
import asyncio
from aworld.models.llm import get_llm_model, acall_llm_model
async def main():
# Initialize model
model = get_llm_model(
llm_provider="anthropic",
model_name="claude-3-5-sonnet-20241022",
api_key="your_anthropic_api_key"
)
# Prepare messages
messages = [
{"role": "user", "content": "List 3 effective ways to learn programming."}
]
# Async call with acall_llm_model
response = await acall_llm_model(model, messages)
print(response.content)
# Async streaming with acall_llm_model
print("\nStreaming response:")
async for chunk in await acall_llm_model(model, messages, stream=True):
if chunk.content:
print(chunk.content, end="", flush=True)
# Run async function
asyncio.run(main())
```
### Selective Sync/Async Initialization
For performance optimization, you can control whether to initialize synchronous or asynchronous providers:
By default, both `sync_enabled` and `async_enabled` are set to `True`, which means both synchronous and asynchronous providers will be initialized.
```python
# Initialize only synchronous provider
model = get_llm_model(
llm_provider="openai",
model_name="gpt-4o",
sync_enabled=True, # Initialize sync provider
async_enabled=False, # Don't initialize async provider
api_key="your_api_key"
)
# Initialize only asynchronous provider
model = get_llm_model(
llm_provider="anthropic",
model_name="claude-3-5-sonnet-20241022",
sync_enabled=False, # Don't initialize sync provider
async_enabled=True, # Initialize async provider
api_key="your_api_key"
)
# Initialize both (default behavior)
model = get_llm_model(
llm_provider="openai",
model_name="gpt-4o",
sync_enabled=True,
async_enabled=True
)
```
### HTTP Client Mode
You can use direct HTTP requests instead of the SDK by specifying `client_type=ClientType.HTTP` parameter:
```python
from aworld.config.conf import AgentConfig, ClientType
from aworld.models.llm import get_llm_model, call_llm_model
# Initialize model with HTTP client mode
model = get_llm_model(
llm_provider="openai",
model_name="gpt-4o",
api_key="your_api_key",
base_url="https://api.openai.com/v1",
client_type=ClientType.HTTP # Use HTTP client instead of SDK
)
# Use it exactly the same way as SDK mode
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Tell me a short joke."}
]
# The model uses HTTP requests under the hood
response = call_llm_model(model, messages)
print(response.content)
# Streaming also works with HTTP client
for chunk in call_llm_model(model, messages, stream=True):
if chunk.content:
print(chunk.content, end="", flush=True)
```
This approach can be useful when:
- You need more control over the HTTP requests
- You have compatibility issues with the official SDK
- You're using a model that follows OpenAI API protocol but isn't fully compatible with the SDK
### Tool Calls Support
```python
from aworld.models.llm import get_llm_model, call_llm_model
import json
# Initialize model
model = get_llm_model(
llm_provider="openai",
model_name="gpt-4o",
api_key="your_api_key"
)
# Define tools
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
}
},
"required": ["location"]
}
}
}
]
# Prepare messages
messages = [
{"role": "user", "content": "What's the weather like in San Francisco?"}
]
# Call model with tools
response = call_llm_model(model, messages, tools=tools, tool_choice="auto")
# Check for tool calls
if response.tool_calls:
for tool_call in response.tool_calls:
print(f"Tool name: {tool_call.name}")
print(f"Arguments: {tool_call.arguments}")
# Handle tool call
if tool_call.name == "get_weather":
# Parse arguments
args = json.loads(tool_call.arguments)
location = args.get("location")
# Mock getting weather data
weather = "Sunny, 25°C"
# Add tool response to messages
messages.append(response.message) # Add assistant message
messages.append({
"role": "tool",
"tool_call_id": tool_call.id,
"name": tool_call.name,
"content": f"{{\"weather\": \"{weather}\"}}"
})
# Call model again
final_response = call_llm_model(model, messages)
print("\nFinal response:", final_response.content)
else:
print("\nResponse content:", response.content)
```
### Asynchronous Calls
```python
import asyncio
from aworld.models.llm import get_llm_model
async def main():
# Initialize model
model = get_llm_model(
llm_provider="anthropic",
model_name="claude-3-5-sonnet-20241022",
temperature=0.0
)
# Prepare messages
messages = [
{"role": "user", "content": "Explain machine learning briefly."}
]
# Async call
response = await model.acompletion(messages)
print(response.content)
# Run async function
asyncio.run(main())
```
### Streaming Responses
```python
# Synchronous streaming
for chunk in model.stream_completion(messages):
print(chunk.content, end="", flush=True)
# Asynchronous streaming
async for chunk in model.astream_completion(messages):
print(chunk.content, end="", flush=True)
```
## ModelResponse Object
All responses are encapsulated in a unified `ModelResponse` object with these key attributes:
- `id`: Response ID
- `model`: Model name used
- `content`: Generated text content
- `tool_calls`: List of tool calls (if any)
- `usage`: Token usage statistics
- `error`: Error message (if any)
- `message`: Complete message object for subsequent API calls
Example:
```python
response = call_llm_model(model, messages)
print(f"Content: {response.content}")
print(f"Model: {response.model}")
print(f"Total tokens: {response.usage['total_tokens']}")
# Get complete message for next call
messages.append(response.message)
```
## API Parameters
Essential parameters for model calls:
- `messages`: List of message dictionaries with `role` and `content` keys
- `temperature`: Controls response randomness (0.0-1.0)
- `max_tokens`: Maximum tokens to generate
- `stop`: List of stopping sequences
- `tools`: List of tool definitions
- `tool_choice`: Tool choice strategy
## Automatic Provider Detection
The system can automatically identify the provider based on model name or API endpoint:
```python
# Detect Anthropic based on model name
model = get_llm_model(model_name="claude-3-5-sonnet-20241022")
```
## Creating Custom Providers
Implement your own provider by extending `LLMProviderBase`:
```python
from aworld.models.llm import LLMProviderBase, register_llm_provider
from aworld.models.model_response import ModelResponse, ToolCall
class CustomProvider(LLMProviderBase):
def _init_provider(self):
# Initialize your API client
return {
"api_key": self.api_key,
"endpoint": self.base_url
}
def _init_async_provider(self):
# Initialize your asynchronous API client (optional)
# If not implemented, async methods will raise NotImplementedError
return None
def preprocess_messages(self, messages):
# Convert standard format to your API format
return messages
def postprocess_response(self, response):
# Convert API response to ModelResponse
return ModelResponse(
id="response_id",
model=self.model_name,
content=response.get("text", ""),
tool_calls=None # Parse ToolCall objects if supported
)
def completion(self, messages, temperature=0.0, **kwargs):
# Implement the actual API call
processed = self.preprocess_messages(messages)
# Call your API here...
response = {"text": "Response from custom provider"}
return self.postprocess_response(response)
async def acompletion(self, messages, temperature=0.0, **kwargs):
# Implement async API call
# Similar to completion but asynchronous
response = {"text": "Async response from custom provider"}
return self.postprocess_response(response)
# Register your provider
register_llm_provider("custom_provider", CustomProvider)
# Use it like any other provider
model = get_llm_model(llm_provider="custom_provider", model_name="custom-model")
```
## API Key Management
Keys are retrieved in this order:
1. Direct `api_key` parameter
2. Environment variable in `.env` file
3. System environment variable
Example for OpenAI: `OPENAI_API_KEY` in parameters → `.env` → system env
|