Spaces:
Sleeping
Sleeping
File size: 35,135 Bytes
ae64487 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 |
import ast
import asyncio
import datetime
import html
import json
import os
import time
from typing import (
Any,
List,
Dict,
Generator,
AsyncGenerator,
)
from binascii import b2a_hex
from aworld.config.conf import ClientType
from aworld.core.llm_provider_base import LLMProviderBase
from aworld.models.llm_http_handler import LLMHTTPHandler
from aworld.models.model_response import ModelResponse, LLMResponseError, ToolCall
from aworld.logs.util import logger
from aworld.utils import import_package
from aworld.models.utils import usage_process
MODEL_NAMES = {
"anthropic": ["claude-3-5-sonnet-20241022", "claude-3-5-sonnet-20240620", "claude-3-opus-20240229"],
"openai": ["gpt-4o", "gpt-4", "gpt-3.5-turbo", "o3-mini", "gpt-4o-mini"],
}
# Custom JSON encoder to handle ToolCall and other special types
class CustomJSONEncoder(json.JSONEncoder):
"""Custom JSON encoder to handle ToolCall objects and other special types."""
def default(self, obj):
# Handle objects with to_dict method
if hasattr(obj, 'to_dict') and callable(obj.to_dict):
return obj.to_dict()
# Handle objects with __dict__ attribute (most custom classes)
if hasattr(obj, '__dict__'):
return obj.__dict__
# Let the base class handle it (will raise TypeError if not serializable)
return super().default(obj)
class AntProvider(LLMProviderBase):
"""Ant provider implementation.
"""
def _init_provider(self):
"""Initialize Ant provider.
Returns:
Ant provider instance.
"""
import_package("Crypto", install_name="pycryptodome")
# Get API key
api_key = self.api_key
if not api_key:
env_var = "ANT_API_KEY"
api_key = os.getenv(env_var, "")
self.api_key = api_key
if not api_key:
raise ValueError(
f"ANT API key not found, please set {env_var} environment variable or provide it in the parameters")
if api_key and api_key.startswith("ak_info:"):
ak_info_str = api_key[len("ak_info:"):]
try:
ak_info = json.loads(ak_info_str)
for key, value in ak_info.items():
os.environ[key] = value
if key == "ANT_API_KEY":
api_key = value
self.api_key = api_key
except Exception as e:
logger.warn(f"Invalid ANT API key startswith ak_info: {api_key}")
self.stream_api_key = os.getenv("ANT_STREAM_API_KEY", "")
base_url = self.base_url
if not base_url:
base_url = os.getenv("ANT_ENDPOINT", "https://zdfmng.alipay.com")
self.base_url = base_url
self.aes_key = os.getenv("ANT_AES_KEY", "")
self.is_http_provider = True
self.kwargs["client_type"] = ClientType.HTTP
logger.info(f"Using HTTP provider for Ant")
self.http_provider = LLMHTTPHandler(
base_url=base_url,
api_key=api_key,
model_name=self.model_name,
)
self.is_http_provider = True
return self.http_provider
def _init_async_provider(self):
"""Initialize async Ant provider.
Returns:
Async Ant provider instance.
"""
# Get API key
if not self.provider:
provider = self._init_provider()
return provider
@classmethod
def supported_models(cls) -> list[str]:
return [""]
def _aes_encrypt(self, data, key):
"""AES encryption function. If data is not a multiple of 16 [encrypted data must be a multiple of 16!], pad it to a multiple of 16.
Args:
key: Encryption key
data: Data to encrypt
Returns:
Encrypted data
"""
from Crypto.Cipher import AES
iv = "1234567890123456"
cipher = AES.new(key.encode('utf-8'), AES.MODE_CBC, iv.encode('utf-8'))
block_size = AES.block_size
# Check if data is a multiple of 16, if not, pad with b'\0'
if len(data) % block_size != 0:
add = block_size - (len(data) % block_size)
else:
add = 0
data = data.encode('utf-8') + b'\0' * add
encrypted = cipher.encrypt(data)
result = b2a_hex(encrypted)
return result.decode('utf-8')
def _build_openai_params(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs) -> Dict[str, Any]:
openai_params = {
"model": kwargs.get("model_name", self.model_name or ""),
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"stop": stop
}
supported_params = [
"frequency_penalty", "logit_bias", "logprobs", "top_logprobs",
"presence_penalty", "response_format", "seed", "stream", "top_p",
"user", "function_call", "functions", "tools", "tool_choice"
]
for param in supported_params:
if param in kwargs:
openai_params[param] = kwargs[param]
return openai_params
def _build_claude_params(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs) -> Dict[str, Any]:
claude_params = {
"model": kwargs.get("model_name", self.model_name or ""),
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"stop": stop
}
supported_params = [
"top_p", "top_k", "reasoning_effort", "tools", "tool_choice"
]
for param in supported_params:
if param in kwargs:
claude_params[param] = kwargs[param]
return claude_params
def _get_visit_info(self):
visit_info = {
"visitDomain": self.kwargs.get("ant_visit_domain") or os.getenv("ANT_VISIT_DOMAIN", "BU_general"),
"visitBiz": self.kwargs.get("ant_visit_biz") or os.getenv("ANT_VISIT_BIZ", ""),
"visitBizLine": self.kwargs.get("ant_visit_biz_line") or os.getenv("ANT_VISIT_BIZ_LINE", "")
}
if not visit_info["visitBiz"] or not visit_info["visitBizLine"]:
return None
return visit_info
def _get_service_param(self,
message_key: str,
output_type: str = "request",
messages: List[Dict[str, str]] = None,
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs
) -> Dict[str, Any]:
"""Get service name from model name.
Returns:
Service name.
"""
if messages:
for message in messages:
if message["role"] == "assistant" and "tool_calls" in message and message["tool_calls"]:
if message["content"] is None: message["content"] = ""
processed_tool_calls = []
for tool_call in message["tool_calls"]:
if isinstance(tool_call, dict):
processed_tool_calls.append(tool_call)
elif isinstance(tool_call, ToolCall):
processed_tool_calls.append(tool_call.to_dict())
message["tool_calls"] = processed_tool_calls
query_conditions = {
"messageKey": message_key,
}
param = {"cacheInterval": -1, }
visit_info = self._get_visit_info()
if not visit_info:
raise LLMResponseError(
f"AntProvider#Invalid visit_info, please set ANT_VISIT_BIZ and ANT_VISIT_BIZ_LINE environment variable or provide it in the parameters",
self.model_name or "unknown"
)
param.update(visit_info)
if self.model_name.startswith("claude"):
query_conditions.update(self._build_claude_params(messages, temperature, max_tokens, stop, **kwargs))
param.update({
"serviceName": "amazon_claude_chat_completions_dataview",
"queryConditions": query_conditions,
})
elif output_type == "pull":
param.update({
"serviceName": "chatgpt_response_query_dataview",
"queryConditions": query_conditions
})
else:
query_conditions = {
"model": self.model_name,
"n": "1",
"api_key": self.api_key,
"messageKey": message_key,
"outputType": "PULL",
"messages": messages,
}
query_conditions.update(self._build_openai_params(messages, temperature, max_tokens, stop, **kwargs))
param.update({
"serviceName": "asyn_chatgpt_prompts_completions_query_dataview",
"queryConditions": query_conditions,
})
return param
def _gen_message_key(self):
def _timestamp():
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
return timestamp
timestamp = _timestamp()
message_key = "llm_call_%s" % (timestamp)
return message_key
def _build_request_data(self, param: Dict[str, Any]):
param_data = json.dumps(param)
encrypted_param_data = self._aes_encrypt(param_data, self.aes_key)
post_data = {"encryptedParam": encrypted_param_data}
return post_data
def _build_chat_query_request_data(self,
message_key: str,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs):
param = self._get_service_param(message_key, "request", messages, temperature, max_tokens, stop, **kwargs)
query_data = self._build_request_data(param)
return query_data
def _post_chat_query_request(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs):
message_key = self._gen_message_key()
post_data = self._build_chat_query_request_data(message_key,
messages,
model_name=self.model_name,
temperature=temperature,
max_tokens=max_tokens,
stop=stop,
**kwargs)
response = self.http_provider.sync_call(post_data, endpoint="commonQuery/queryData")
return message_key, response
def _valid_chat_result(self, body):
if "data" not in body or not body["data"]:
return False
if "values" not in body["data"] or not body["data"]["values"]:
return False
if "response" not in body["data"]["values"] and "data" not in body["data"]["values"]:
return False
return True
def _build_chat_pull_request_data(self, message_key):
param = self._get_service_param(message_key, "pull")
pull_data = self._build_request_data(param)
return pull_data
def _pull_chat_result(self, message_key, response: Dict[str, Any], timeout):
if self.model_name.startswith("claude"):
if self._valid_chat_result(response):
x = response["data"]["values"]["data"]
ast_str = ast.literal_eval("'" + x + "'")
result = html.unescape(ast_str)
data = json.loads(result)
return data
else:
raise LLMResponseError(
f"Invalid response from Ant API, response: {response}",
self.model_name or "unknown"
)
post_data = self._build_chat_pull_request_data(message_key)
url = 'commonQuery/queryData'
headers = {
'Content-Type': 'application/json'
}
# Start polling until valid result or timeout
start_time = time.time()
elapsed_time = 0
while elapsed_time < timeout:
response = self.http_provider.sync_call(post_data, endpoint=url, headers=headers)
logger.debug(f"Poll attempt at {elapsed_time}s, response: {response}")
# Check if valid result is received
if self._valid_chat_result(response):
x = response["data"]["values"]["response"]
ast_str = ast.literal_eval("'" + x + "'")
result = html.unescape(ast_str)
data = json.loads(result)
return data
elif (not response.get("success")) or ("data" in response and response["data"]):
err_code = response.get("data", {}).get("errorCode", "")
err_msg = response.get("data", {}).get("errorMessage", "")
if err_code or err_msg:
raise LLMResponseError(
f"Request failed: {response}",
self.model_name or "unknown"
)
# If no result, wait 1 second and query again
time.sleep(1)
elapsed_time = time.time() - start_time
logger.debug(f"Polling... Elapsed time: {elapsed_time:.1f}s")
# Timeout handling
raise LLMResponseError(
f"Timeout after {timeout} seconds waiting for response from Ant API",
self.model_name or "unknown"
)
async def _async_pull_chat_result(self, message_key, response: Dict[str, Any], timeout):
if self.model_name.startswith("claude"):
if self._valid_chat_result(response):
x = response["data"]["values"]["data"]
ast_str = ast.literal_eval("'" + x + "'")
result = html.unescape(ast_str)
data = json.loads(result)
return data
elif (not response.get("success")) or ("data" in response and response["data"]):
err_code = response.get("data", {}).get("errorCode", "")
err_msg = response.get("data", {}).get("errorMessage", "")
if err_code or err_msg:
raise LLMResponseError(
f"Request failed: {response}",
self.model_name or "unknown"
)
post_data = self._build_chat_pull_request_data(message_key)
url = 'commonQuery/queryData'
headers = {
'Content-Type': 'application/json'
}
# Start polling until valid result or timeout
start_time = time.time()
elapsed_time = 0
while elapsed_time < timeout:
response = await self.http_provider.async_call(post_data, endpoint=url, headers=headers)
logger.debug(f"Poll attempt at {elapsed_time}s, response: {response}")
# Check if valid result is received
if self._valid_chat_result(response):
x = response["data"]["values"]["response"]
ast_str = ast.literal_eval("'" + x + "'")
result = html.unescape(ast_str)
data = json.loads(result)
return data
elif (not response.get("success")) or ("data" in response and response["data"]):
err_code = response.get("data", {}).get("errorCode", "")
err_msg = response.get("data", {}).get("errorMessage", "")
if err_code or err_msg:
raise LLMResponseError(
f"Request failed: {response}",
self.model_name or "unknown"
)
# If no result, wait 1 second and query again
await asyncio.sleep(1)
elapsed_time = time.time() - start_time
logger.debug(f"Polling... Elapsed time: {elapsed_time:.1f}s")
# Timeout handling
raise LLMResponseError(
f"Timeout after {timeout} seconds waiting for response from Ant API",
self.model_name or "unknown"
)
def _convert_completion_message(self, message: Dict[str, Any], is_finished: bool = False) -> ModelResponse:
"""Convert Ant completion message to OpenAI format.
Args:
message: Ant completion message.
Returns:
OpenAI format message.
"""
# Generate unique ID
response_id = f"ant-{hash(str(message)) & 0xffffffff:08x}"
# Get content
content = message.get("completion", "")
# Create message object
message_dict = {
"role": "assistant",
"content": content,
"is_chunk": True
}
# Keep original contextId and sessionId
if "contextId" in message:
message_dict["contextId"] = message["contextId"]
if "sessionId" in message:
message_dict["sessionId"] = message["sessionId"]
usage = {
"completion_tokens": message.get("completionToken", 0),
"prompt_tokens": message.get("promptTokens", 0),
"total_tokens": message.get("completionToken", 0) + message.get("promptTokens", 0)
}
# process tool calls
tool_calls = message.get("toolCalls", [])
for tool_call in tool_calls:
index = tool_call.get("index", 0)
name = tool_call.get("function", {}).get("name")
arguments = tool_call.get("function", {}).get("arguments")
if index >= len(self.stream_tool_buffer):
self.stream_tool_buffer.append({
"id": tool_call.get("id"),
"type": "function",
"function": {
"name": name,
"arguments": arguments
}
})
else:
self.stream_tool_buffer[index]["function"]["arguments"] += arguments
if is_finished and self.stream_tool_buffer:
message_dict["tool_calls"] = self.stream_tool_buffer.copy()
processed_tool_calls = []
for tool_call in self.stream_tool_buffer:
processed_tool_calls.append(ToolCall.from_dict(tool_call))
tool_resp = ModelResponse(
id=response_id,
model=self.model_name or "ant",
content=content,
tool_calls=processed_tool_calls,
usage=usage,
raw_response=message,
message=message_dict
)
self.stream_tool_buffer = []
return tool_resp
# Build and return ModelResponse object directly
return ModelResponse(
id=response_id,
model=self.model_name or "ant",
content=content,
tool_calls=None, # TODO: add tool calls
usage=usage,
raw_response=message,
message=message_dict
)
def preprocess_stream_call_message(self, messages: List[Dict[str, str]], ext_params: Dict[str, Any]) -> Dict[
str, str]:
"""Preprocess messages, use Ant format directly.
Args:
messages: Ant format message list.
Returns:
Processed message list.
"""
param = {
"messages": messages,
"sessionId": "TkQUldjzOgYSKyTrpor3TA==",
"model": self.model_name,
"needMemory": False,
"stream": True,
"contextId": "contextId_34555fd2d246447fa55a1a259445a427",
"platform": "AWorld"
}
for k in ext_params.keys():
if k not in param:
param[k] = ext_params[k]
return param
def postprocess_response(self, response: Any) -> ModelResponse:
"""Process Ant response.
Args:
response: Ant response object.
Returns:
ModelResponse object.
Raises:
LLMResponseError: When LLM response error occurs.
"""
if ((not isinstance(response, dict) and (not hasattr(response, 'choices') or not response.choices))
or (isinstance(response, dict) and not response.get("choices"))):
error_msg = ""
if hasattr(response, 'error') and response.error and isinstance(response.error, dict):
error_msg = response.error.get('message', '')
elif hasattr(response, 'msg'):
error_msg = response.msg
raise LLMResponseError(
error_msg if error_msg else "Unknown error",
self.model_name or "unknown",
response
)
return ModelResponse.from_openai_response(response)
def postprocess_stream_response(self, chunk: Any) -> ModelResponse:
"""Process Ant stream response chunk.
Args:
chunk: Ant response chunk.
Returns:
ModelResponse object.
Raises:
LLMResponseError: When LLM response error occurs.
"""
# Check if chunk contains error
if hasattr(chunk, 'error') or (isinstance(chunk, dict) and chunk.get('error')):
error_msg = chunk.error if hasattr(chunk, 'error') else chunk.get('error', 'Unknown error')
raise LLMResponseError(
error_msg,
self.model_name or "unknown",
chunk
)
if isinstance(chunk, dict) and ('completion' in chunk):
return self._convert_completion_message(chunk)
# If chunk is already in OpenAI format, use standard processing method
return ModelResponse.from_openai_stream_chunk(chunk)
def completion(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs) -> ModelResponse:
"""Synchronously call Ant to generate response.
Args:
messages: Message list.
temperature: Temperature parameter.
max_tokens: Maximum number of tokens to generate.
stop: List of stop sequences.
**kwargs: Other parameters.
Returns:
ModelResponse object.
Raises:
LLMResponseError: When LLM response error occurs.
"""
if not self.provider:
raise RuntimeError(
"Sync provider not initialized. Make sure 'sync_enabled' parameter is set to True in initialization.")
try:
start_time = time.time()
message_key, response = self._post_chat_query_request(messages, temperature, max_tokens, stop, **kwargs)
timeout = kwargs.get("response_timeout", self.kwargs.get("timeout", 180))
result = self._pull_chat_result(message_key, response, timeout)
logger.info(f"completion cost time: {time.time() - start_time}s.")
resp = self.postprocess_response(result)
usage_process(resp.usage)
return resp
except Exception as e:
if isinstance(e, LLMResponseError):
raise e
logger.warn(f"Error in Ant completion: {e}")
raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))
async def acompletion(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs) -> ModelResponse:
"""Asynchronously call Ant to generate response.
Args:
messages: Message list.
temperature: Temperature parameter.
max_tokens: Maximum number of tokens to generate.
stop: List of stop sequences.
**kwargs: Other parameters.
Returns:
ModelResponse object.
Raises:
LLMResponseError: When LLM response error occurs.
"""
if not self.async_provider:
self._init_async_provider()
start_time = time.time()
try:
message_key, response = self._post_chat_query_request(messages, temperature, max_tokens, stop, **kwargs)
timeout = kwargs.get("response_timeout", self.kwargs.get("timeout", 180))
result = await self._async_pull_chat_result(message_key, response, timeout)
logger.info(f"completion cost time: {time.time() - start_time}s.")
resp = self.postprocess_response(result)
usage_process(resp.usage)
return resp
except Exception as e:
if isinstance(e, LLMResponseError):
raise e
logger.warn(f"Error in async Ant completion: {e}")
raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))
def stream_completion(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs) -> Generator[ModelResponse, None, None]:
"""Synchronously call Ant to generate streaming response.
Args:
messages: Message list.
temperature: Temperature parameter.
max_tokens: Maximum number of tokens to generate.
stop: List of stop sequences.
**kwargs: Other parameters.
Returns:
Generator yielding ModelResponse chunks.
Raises:
LLMResponseError: When LLM response error occurs.
"""
if not self.provider:
raise RuntimeError(
"Sync provider not initialized. Make sure 'sync_enabled' parameter is set to True in initialization.")
start_time = time.time()
# Generate message_key
timestamp = int(time.time())
self.message_key = f"llm_call_{timestamp}"
message_key_literal = self.message_key # Ensure it's a direct string literal
self.aes_key = kwargs.get("aes_key", self.aes_key)
# Add streaming parameter
kwargs["stream"] = True
processed_messages = self.preprocess_stream_call_message(messages,
self._build_openai_params(temperature, max_tokens,
stop, **kwargs))
if not processed_messages:
raise LLMResponseError("Failed to get post data", self.model_name or "unknown")
usage = {
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0
}
try:
# Send request
# response = self.http_provider.sync_call(processed_messages[0], endpoint="commonQuery/queryData")
headers = {
"Content-Type": "application/json",
"X_ACCESS_KEY": self.stream_api_key
}
response_stream = self.http_provider.sync_stream_call(processed_messages, endpoint="chat/completions",
headers=headers)
if response_stream:
for chunk in response_stream:
if not chunk:
continue
# Process special markers
if isinstance(chunk, dict) and "status" in chunk:
if chunk["status"] == "done":
# Stream completion marker, can choose to end
logger.info("Received [DONE] marker, stream completed")
yield self._convert_completion_message(chunk, is_finished=True)
yield ModelResponse.from_special_marker("done", self.model_name, chunk)
break
elif chunk["status"] == "revoke":
# Revoke marker, need to notify the frontend to revoke the displayed content
logger.info("Received [REVOKE] marker, content should be revoked")
yield ModelResponse.from_special_marker("revoke", self.model_name, chunk)
continue
elif chunk["status"] == "fail":
# Fail marker
logger.error("Received [FAIL] marker, request failed")
raise LLMResponseError("Request failed", self.model_name or "unknown")
elif chunk["status"] == "cancel":
# Request was cancelled
logger.warning("Received [CANCEL] marker, stream was cancelled")
raise LLMResponseError("Stream was cancelled", self.model_name or "unknown")
continue
# Process normal response chunks
resp = self.postprocess_stream_response(chunk)
self._accumulate_chunk_usage(usage, resp.usage)
yield resp
usage_process(usage)
logger.info(f"stream_completion cost time: {time.time() - start_time}s.")
except Exception as e:
if isinstance(e, LLMResponseError):
raise e
logger.error(f"Error in Ant stream completion: {e}")
raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))
async def astream_completion(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs) -> AsyncGenerator[ModelResponse, None]:
"""Asynchronously call Ant to generate streaming response.
Args:
messages: Message list.
temperature: Temperature parameter.
max_tokens: Maximum number of tokens to generate.
stop: List of stop sequences.
**kwargs: Other parameters.
Returns:
AsyncGenerator yielding ModelResponse chunks.
Raises:
LLMResponseError: When LLM response error occurs.
"""
if not self.async_provider:
self._init_async_provider()
start_time = time.time()
# Generate message_key
timestamp = int(time.time())
self.message_key = f"llm_call_{timestamp}"
message_key_literal = self.message_key # Ensure it's a direct string literal
self.aes_key = kwargs.get("aes_key", self.aes_key)
# Add streaming parameter
kwargs["stream"] = True
processed_messages = self.preprocess_stream_call_message(messages,
self._build_openai_params(temperature, max_tokens,
stop, **kwargs))
if not processed_messages:
raise LLMResponseError("Failed to get post data", self.model_name or "unknown")
usage = {
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0
}
try:
headers = {
"Content-Type": "application/json",
"X_ACCESS_KEY": self.stream_api_key
}
logger.info(f"astream_completion request data: {processed_messages}")
async for chunk in self.http_provider.async_stream_call(processed_messages, endpoint="chat/completions",
headers=headers):
if not chunk:
continue
# Process special markers
if isinstance(chunk, dict) and "status" in chunk:
if chunk["status"] == "done":
# Stream completion marker, can choose to end
logger.info("Received [DONE] marker, stream completed")
yield ModelResponse.from_special_marker("done", self.model_name, chunk)
break
elif chunk["status"] == "revoke":
# Revoke marker, need to notify the frontend to revoke the displayed content
logger.info("Received [REVOKE] marker, content should be revoked")
yield ModelResponse.from_special_marker("revoke", self.model_name, chunk)
continue
elif chunk["status"] == "fail":
# Fail marker
logger.error("Received [FAIL] marker, request failed")
raise LLMResponseError("Request failed", self.model_name or "unknown")
elif chunk["status"] == "cancel":
# Request was cancelled
logger.warning("Received [CANCEL] marker, stream was cancelled")
raise LLMResponseError("Stream was cancelled", self.model_name or "unknown")
continue
# Process normal response chunks
resp = self.postprocess_stream_response(chunk)
self._accumulate_chunk_usage(usage, resp.usage)
yield resp
usage_process(usage)
logger.info(f"astream_completion cost time: {time.time() - start_time}s.")
except Exception as e:
if isinstance(e, LLMResponseError):
raise e
logger.warn(f"Error in async Ant stream completion: {e}")
raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))
|