File size: 35,135 Bytes
ae64487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
import ast
import asyncio
import datetime
import html
import json
import os
import time

from typing import (
    Any,
    List,
    Dict,
    Generator,
    AsyncGenerator,
)
from binascii import b2a_hex

from aworld.config.conf import ClientType
from aworld.core.llm_provider_base import LLMProviderBase
from aworld.models.llm_http_handler import LLMHTTPHandler
from aworld.models.model_response import ModelResponse, LLMResponseError, ToolCall
from aworld.logs.util import logger
from aworld.utils import import_package
from aworld.models.utils import usage_process

MODEL_NAMES = {
    "anthropic": ["claude-3-5-sonnet-20241022", "claude-3-5-sonnet-20240620", "claude-3-opus-20240229"],
    "openai": ["gpt-4o", "gpt-4", "gpt-3.5-turbo", "o3-mini", "gpt-4o-mini"],
}


# Custom JSON encoder to handle ToolCall and other special types
class CustomJSONEncoder(json.JSONEncoder):
    """Custom JSON encoder to handle ToolCall objects and other special types."""

    def default(self, obj):
        # Handle objects with to_dict method
        if hasattr(obj, 'to_dict') and callable(obj.to_dict):
            return obj.to_dict()

        # Handle objects with __dict__ attribute (most custom classes)
        if hasattr(obj, '__dict__'):
            return obj.__dict__

        # Let the base class handle it (will raise TypeError if not serializable)
        return super().default(obj)


class AntProvider(LLMProviderBase):
    """Ant provider implementation.
    """

    def _init_provider(self):
        """Initialize Ant provider.

        Returns:
            Ant provider instance.
        """
        import_package("Crypto", install_name="pycryptodome")

        # Get API key
        api_key = self.api_key

        if not api_key:
            env_var = "ANT_API_KEY"
            api_key = os.getenv(env_var, "")
            self.api_key = api_key
            if not api_key:
                raise ValueError(
                    f"ANT API key not found, please set {env_var} environment variable or provide it in the parameters")

        if api_key and api_key.startswith("ak_info:"):
            ak_info_str = api_key[len("ak_info:"):]
            try:
                ak_info = json.loads(ak_info_str)
                for key, value in ak_info.items():
                    os.environ[key] = value
                    if key == "ANT_API_KEY":
                        api_key = value
                        self.api_key = api_key
            except Exception as e:
                logger.warn(f"Invalid ANT API key startswith ak_info: {api_key}")

        self.stream_api_key = os.getenv("ANT_STREAM_API_KEY", "")

        base_url = self.base_url
        if not base_url:
            base_url = os.getenv("ANT_ENDPOINT", "https://zdfmng.alipay.com")
            self.base_url = base_url

        self.aes_key = os.getenv("ANT_AES_KEY", "")

        self.is_http_provider = True
        self.kwargs["client_type"] = ClientType.HTTP
        logger.info(f"Using HTTP provider for Ant")
        self.http_provider = LLMHTTPHandler(
            base_url=base_url,
            api_key=api_key,
            model_name=self.model_name,
        )
        self.is_http_provider = True
        return self.http_provider

    def _init_async_provider(self):
        """Initialize async Ant provider.

        Returns:
            Async Ant provider instance.
        """
        # Get API key
        if not self.provider:
            provider = self._init_provider()
            return provider

    @classmethod
    def supported_models(cls) -> list[str]:
        return [""]

    def _aes_encrypt(self, data, key):
        """AES encryption function. If data is not a multiple of 16 [encrypted data must be a multiple of 16!], pad it to a multiple of 16.

        Args:
            key: Encryption key
            data: Data to encrypt

        Returns:
            Encrypted data
        """
        from Crypto.Cipher import AES

        iv = "1234567890123456"
        cipher = AES.new(key.encode('utf-8'), AES.MODE_CBC, iv.encode('utf-8'))
        block_size = AES.block_size

        # Check if data is a multiple of 16, if not, pad with b'\0'
        if len(data) % block_size != 0:
            add = block_size - (len(data) % block_size)
        else:
            add = 0
        data = data.encode('utf-8') + b'\0' * add
        encrypted = cipher.encrypt(data)
        result = b2a_hex(encrypted)
        return result.decode('utf-8')

    def _build_openai_params(self,
                             messages: List[Dict[str, str]],
                             temperature: float = 0.0,
                             max_tokens: int = None,
                             stop: List[str] = None,
                             **kwargs) -> Dict[str, Any]:
        openai_params = {
            "model": kwargs.get("model_name", self.model_name or ""),
            "messages": messages,
            "temperature": temperature,
            "max_tokens": max_tokens,
            "stop": stop
        }

        supported_params = [
            "frequency_penalty", "logit_bias", "logprobs", "top_logprobs",
            "presence_penalty", "response_format", "seed", "stream", "top_p",
            "user", "function_call", "functions", "tools", "tool_choice"
        ]

        for param in supported_params:
            if param in kwargs:
                openai_params[param] = kwargs[param]

        return openai_params

    def _build_claude_params(self,
                             messages: List[Dict[str, str]],
                             temperature: float = 0.0,
                             max_tokens: int = None,
                             stop: List[str] = None,
                             **kwargs) -> Dict[str, Any]:
        claude_params = {
            "model": kwargs.get("model_name", self.model_name or ""),
            "messages": messages,
            "temperature": temperature,
            "max_tokens": max_tokens,
            "stop": stop
        }

        supported_params = [
            "top_p", "top_k", "reasoning_effort", "tools", "tool_choice"
        ]

        for param in supported_params:
            if param in kwargs:
                claude_params[param] = kwargs[param]

        return claude_params

    def _get_visit_info(self):
        visit_info = {
            "visitDomain": self.kwargs.get("ant_visit_domain") or os.getenv("ANT_VISIT_DOMAIN", "BU_general"),
            "visitBiz": self.kwargs.get("ant_visit_biz") or os.getenv("ANT_VISIT_BIZ", ""),
            "visitBizLine": self.kwargs.get("ant_visit_biz_line") or os.getenv("ANT_VISIT_BIZ_LINE", "")
        }
        if not visit_info["visitBiz"] or not visit_info["visitBizLine"]:
            return None
        return visit_info

    def _get_service_param(self,
                           message_key: str,
                           output_type: str = "request",
                           messages: List[Dict[str, str]] = None,
                           temperature: float = 0.0,
                           max_tokens: int = None,
                           stop: List[str] = None,
                           **kwargs
                           ) -> Dict[str, Any]:
        """Get service name from model name.
        Returns:
            Service name.
        """
        if messages:
            for message in messages:
                if message["role"] == "assistant" and "tool_calls" in message and message["tool_calls"]:
                    if message["content"] is None: message["content"] = ""
                    processed_tool_calls = []
                    for tool_call in message["tool_calls"]:
                        if isinstance(tool_call, dict):
                            processed_tool_calls.append(tool_call)
                        elif isinstance(tool_call, ToolCall):
                            processed_tool_calls.append(tool_call.to_dict())
                    message["tool_calls"] = processed_tool_calls
        query_conditions = {
            "messageKey": message_key,
        }
        param = {"cacheInterval": -1, }
        visit_info = self._get_visit_info()
        if not visit_info:
            raise LLMResponseError(
                f"AntProvider#Invalid visit_info, please set ANT_VISIT_BIZ and ANT_VISIT_BIZ_LINE environment variable or provide it in the parameters",
                self.model_name or "unknown"
            )
        param.update(visit_info)
        if self.model_name.startswith("claude"):
            query_conditions.update(self._build_claude_params(messages, temperature, max_tokens, stop, **kwargs))
            param.update({
                "serviceName": "amazon_claude_chat_completions_dataview",
                "queryConditions": query_conditions,
            })
        elif output_type == "pull":
            param.update({
                "serviceName": "chatgpt_response_query_dataview",
                "queryConditions": query_conditions
            })
        else:
            query_conditions = {
                "model": self.model_name,
                "n": "1",
                "api_key": self.api_key,
                "messageKey": message_key,
                "outputType": "PULL",
                "messages": messages,
            }
            query_conditions.update(self._build_openai_params(messages, temperature, max_tokens, stop, **kwargs))
            param.update({
                "serviceName": "asyn_chatgpt_prompts_completions_query_dataview",
                "queryConditions": query_conditions,
            })
        return param

    def _gen_message_key(self):
        def _timestamp():
            timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
            return timestamp

        timestamp = _timestamp()
        message_key = "llm_call_%s" % (timestamp)
        return message_key

    def _build_request_data(self, param: Dict[str, Any]):
        param_data = json.dumps(param)
        encrypted_param_data = self._aes_encrypt(param_data, self.aes_key)
        post_data = {"encryptedParam": encrypted_param_data}
        return post_data

    def _build_chat_query_request_data(self,
                                       message_key: str,
                                       messages: List[Dict[str, str]],
                                       temperature: float = 0.0,
                                       max_tokens: int = None,
                                       stop: List[str] = None,
                                       **kwargs):
        param = self._get_service_param(message_key, "request", messages, temperature, max_tokens, stop, **kwargs)
        query_data = self._build_request_data(param)
        return query_data

    def _post_chat_query_request(self,
                                 messages: List[Dict[str, str]],
                                 temperature: float = 0.0,
                                 max_tokens: int = None,
                                 stop: List[str] = None,
                                 **kwargs):
        message_key = self._gen_message_key()
        post_data = self._build_chat_query_request_data(message_key,
                                                        messages,
                                                        model_name=self.model_name,
                                                        temperature=temperature,
                                                        max_tokens=max_tokens,
                                                        stop=stop,
                                                        **kwargs)
        response = self.http_provider.sync_call(post_data, endpoint="commonQuery/queryData")
        return message_key, response

    def _valid_chat_result(self, body):
        if "data" not in body or not body["data"]:
            return False
        if "values" not in body["data"] or not body["data"]["values"]:
            return False
        if "response" not in body["data"]["values"] and "data" not in body["data"]["values"]:
            return False
        return True

    def _build_chat_pull_request_data(self, message_key):
        param = self._get_service_param(message_key, "pull")

        pull_data = self._build_request_data(param)
        return pull_data

    def _pull_chat_result(self, message_key, response: Dict[str, Any], timeout):
        if self.model_name.startswith("claude"):
            if self._valid_chat_result(response):
                x = response["data"]["values"]["data"]
                ast_str = ast.literal_eval("'" + x + "'")
                result = html.unescape(ast_str)
                data = json.loads(result)
                return data
            else:
                raise LLMResponseError(
                    f"Invalid response from Ant API, response: {response}",
                    self.model_name or "unknown"
                )

        post_data = self._build_chat_pull_request_data(message_key)
        url = 'commonQuery/queryData'
        headers = {
            'Content-Type': 'application/json'
        }

        # Start polling until valid result or timeout
        start_time = time.time()
        elapsed_time = 0

        while elapsed_time < timeout:
            response = self.http_provider.sync_call(post_data, endpoint=url, headers=headers)

            logger.debug(f"Poll attempt at {elapsed_time}s, response: {response}")

            # Check if valid result is received
            if self._valid_chat_result(response):
                x = response["data"]["values"]["response"]
                ast_str = ast.literal_eval("'" + x + "'")
                result = html.unescape(ast_str)
                data = json.loads(result)
                return data
            elif (not response.get("success")) or ("data" in response and response["data"]):
                err_code = response.get("data", {}).get("errorCode", "")
                err_msg = response.get("data", {}).get("errorMessage", "")
                if err_code or err_msg:
                    raise LLMResponseError(
                        f"Request failed: {response}",
                        self.model_name or "unknown"
                    )

            # If no result, wait 1 second and query again
            time.sleep(1)
            elapsed_time = time.time() - start_time
            logger.debug(f"Polling... Elapsed time: {elapsed_time:.1f}s")

        # Timeout handling
        raise LLMResponseError(
            f"Timeout after {timeout} seconds waiting for response from Ant API",
            self.model_name or "unknown"
        )

    async def _async_pull_chat_result(self, message_key, response: Dict[str, Any], timeout):
        if self.model_name.startswith("claude"):
            if self._valid_chat_result(response):
                x = response["data"]["values"]["data"]
                ast_str = ast.literal_eval("'" + x + "'")
                result = html.unescape(ast_str)
                data = json.loads(result)
                return data
            elif (not response.get("success")) or ("data" in response and response["data"]):
                err_code = response.get("data", {}).get("errorCode", "")
                err_msg = response.get("data", {}).get("errorMessage", "")
                if err_code or err_msg:
                    raise LLMResponseError(
                        f"Request failed: {response}",
                        self.model_name or "unknown"
                    )

        post_data = self._build_chat_pull_request_data(message_key)
        url = 'commonQuery/queryData'
        headers = {
            'Content-Type': 'application/json'
        }

        # Start polling until valid result or timeout
        start_time = time.time()
        elapsed_time = 0

        while elapsed_time < timeout:
            response = await self.http_provider.async_call(post_data, endpoint=url, headers=headers)

            logger.debug(f"Poll attempt at {elapsed_time}s, response: {response}")

            # Check if valid result is received
            if self._valid_chat_result(response):
                x = response["data"]["values"]["response"]
                ast_str = ast.literal_eval("'" + x + "'")
                result = html.unescape(ast_str)
                data = json.loads(result)
                return data
            elif (not response.get("success")) or ("data" in response and response["data"]):
                err_code = response.get("data", {}).get("errorCode", "")
                err_msg = response.get("data", {}).get("errorMessage", "")
                if err_code or err_msg:
                    raise LLMResponseError(
                        f"Request failed: {response}",
                        self.model_name or "unknown"
                    )

            # If no result, wait 1 second and query again
            await asyncio.sleep(1)
            elapsed_time = time.time() - start_time
            logger.debug(f"Polling... Elapsed time: {elapsed_time:.1f}s")

        # Timeout handling
        raise LLMResponseError(
            f"Timeout after {timeout} seconds waiting for response from Ant API",
            self.model_name or "unknown"
        )

    def _convert_completion_message(self, message: Dict[str, Any], is_finished: bool = False) -> ModelResponse:
        """Convert Ant completion message to OpenAI format.

        Args:
            message: Ant completion message.

        Returns:
            OpenAI format message.
        """
        # Generate unique ID
        response_id = f"ant-{hash(str(message)) & 0xffffffff:08x}"

        # Get content
        content = message.get("completion", "")

        # Create message object
        message_dict = {
            "role": "assistant",
            "content": content,
            "is_chunk": True
        }

        # Keep original contextId and sessionId
        if "contextId" in message:
            message_dict["contextId"] = message["contextId"]
        if "sessionId" in message:
            message_dict["sessionId"] = message["sessionId"]

        usage = {
            "completion_tokens": message.get("completionToken", 0),
            "prompt_tokens": message.get("promptTokens", 0),
            "total_tokens": message.get("completionToken", 0) + message.get("promptTokens", 0)
        }

        # process tool calls
        tool_calls = message.get("toolCalls", [])
        for tool_call in tool_calls:
            index = tool_call.get("index", 0)
            name = tool_call.get("function", {}).get("name")
            arguments = tool_call.get("function", {}).get("arguments")
            if index >= len(self.stream_tool_buffer):
                self.stream_tool_buffer.append({
                    "id": tool_call.get("id"),
                    "type": "function",
                    "function": {
                        "name": name,
                        "arguments": arguments
                    }
                })
            else:
                self.stream_tool_buffer[index]["function"]["arguments"] += arguments

        if is_finished and self.stream_tool_buffer:
            message_dict["tool_calls"] = self.stream_tool_buffer.copy()
            processed_tool_calls = []
            for tool_call in self.stream_tool_buffer:
                processed_tool_calls.append(ToolCall.from_dict(tool_call))
            tool_resp = ModelResponse(
                id=response_id,
                model=self.model_name or "ant",
                content=content,
                tool_calls=processed_tool_calls,
                usage=usage,
                raw_response=message,
                message=message_dict
            )
            self.stream_tool_buffer = []
            return tool_resp

        # Build and return ModelResponse object directly
        return ModelResponse(
            id=response_id,
            model=self.model_name or "ant",
            content=content,
            tool_calls=None,  # TODO: add tool calls
            usage=usage,
            raw_response=message,
            message=message_dict
        )

    def preprocess_stream_call_message(self, messages: List[Dict[str, str]], ext_params: Dict[str, Any]) -> Dict[
        str, str]:
        """Preprocess messages, use Ant format directly.

        Args:
            messages: Ant format message list.

        Returns:
            Processed message list.
        """
        param = {
            "messages": messages,
            "sessionId": "TkQUldjzOgYSKyTrpor3TA==",
            "model": self.model_name,
            "needMemory": False,
            "stream": True,
            "contextId": "contextId_34555fd2d246447fa55a1a259445a427",
            "platform": "AWorld"
        }
        for k in ext_params.keys():
            if k not in param:
                param[k] = ext_params[k]
        return param

    def postprocess_response(self, response: Any) -> ModelResponse:
        """Process Ant response.

        Args:
            response: Ant response object.

        Returns:
            ModelResponse object.

        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        if ((not isinstance(response, dict) and (not hasattr(response, 'choices') or not response.choices))
                or (isinstance(response, dict) and not response.get("choices"))):
            error_msg = ""
            if hasattr(response, 'error') and response.error and isinstance(response.error, dict):
                error_msg = response.error.get('message', '')
            elif hasattr(response, 'msg'):
                error_msg = response.msg

            raise LLMResponseError(
                error_msg if error_msg else "Unknown error",
                self.model_name or "unknown",
                response
            )

        return ModelResponse.from_openai_response(response)

    def postprocess_stream_response(self, chunk: Any) -> ModelResponse:
        """Process Ant stream response chunk.

        Args:
            chunk: Ant response chunk.

        Returns:
            ModelResponse object.

        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        # Check if chunk contains error
        if hasattr(chunk, 'error') or (isinstance(chunk, dict) and chunk.get('error')):
            error_msg = chunk.error if hasattr(chunk, 'error') else chunk.get('error', 'Unknown error')
            raise LLMResponseError(
                error_msg,
                self.model_name or "unknown",
                chunk
            )

        if isinstance(chunk, dict) and ('completion' in chunk):
            return self._convert_completion_message(chunk)

        # If chunk is already in OpenAI format, use standard processing method
        return ModelResponse.from_openai_stream_chunk(chunk)

    def completion(self,
                   messages: List[Dict[str, str]],
                   temperature: float = 0.0,
                   max_tokens: int = None,
                   stop: List[str] = None,
                   **kwargs) -> ModelResponse:
        """Synchronously call Ant to generate response.

        Args:
            messages: Message list.
            temperature: Temperature parameter.
            max_tokens: Maximum number of tokens to generate.
            stop: List of stop sequences.
            **kwargs: Other parameters.

        Returns:
            ModelResponse object.

        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        if not self.provider:
            raise RuntimeError(
                "Sync provider not initialized. Make sure 'sync_enabled' parameter is set to True in initialization.")

        try:
            start_time = time.time()
            message_key, response = self._post_chat_query_request(messages, temperature, max_tokens, stop, **kwargs)
            timeout = kwargs.get("response_timeout", self.kwargs.get("timeout", 180))
            result = self._pull_chat_result(message_key, response, timeout)
            logger.info(f"completion cost time: {time.time() - start_time}s.")

            resp = self.postprocess_response(result)
            usage_process(resp.usage)
            return resp
        except Exception as e:
            if isinstance(e, LLMResponseError):
                raise e
            logger.warn(f"Error in Ant completion: {e}")
            raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))

    async def acompletion(self,
                          messages: List[Dict[str, str]],
                          temperature: float = 0.0,
                          max_tokens: int = None,
                          stop: List[str] = None,
                          **kwargs) -> ModelResponse:
        """Asynchronously call Ant to generate response.

        Args:
            messages: Message list.
            temperature: Temperature parameter.
            max_tokens: Maximum number of tokens to generate.
            stop: List of stop sequences.
            **kwargs: Other parameters.

        Returns:
            ModelResponse object.

        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        if not self.async_provider:
            self._init_async_provider()

        start_time = time.time()
        try:
            message_key, response = self._post_chat_query_request(messages, temperature, max_tokens, stop, **kwargs)
            timeout = kwargs.get("response_timeout", self.kwargs.get("timeout", 180))
            result = await self._async_pull_chat_result(message_key, response, timeout)
            logger.info(f"completion cost time: {time.time() - start_time}s.")

            resp = self.postprocess_response(result)
            usage_process(resp.usage)
            return resp

        except Exception as e:
            if isinstance(e, LLMResponseError):
                raise e
            logger.warn(f"Error in async Ant completion: {e}")
            raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))

    def stream_completion(self,
                          messages: List[Dict[str, str]],
                          temperature: float = 0.0,
                          max_tokens: int = None,
                          stop: List[str] = None,
                          **kwargs) -> Generator[ModelResponse, None, None]:
        """Synchronously call Ant to generate streaming response.

        Args:
            messages: Message list.
            temperature: Temperature parameter.
            max_tokens: Maximum number of tokens to generate.
            stop: List of stop sequences.
            **kwargs: Other parameters.

        Returns:
            Generator yielding ModelResponse chunks.

        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        if not self.provider:
            raise RuntimeError(
                "Sync provider not initialized. Make sure 'sync_enabled' parameter is set to True in initialization.")

        start_time = time.time()
        # Generate message_key
        timestamp = int(time.time())
        self.message_key = f"llm_call_{timestamp}"
        message_key_literal = self.message_key  # Ensure it's a direct string literal
        self.aes_key = kwargs.get("aes_key", self.aes_key)

        # Add streaming parameter
        kwargs["stream"] = True
        processed_messages = self.preprocess_stream_call_message(messages,
                                                                 self._build_openai_params(temperature, max_tokens,
                                                                                           stop, **kwargs))
        if not processed_messages:
            raise LLMResponseError("Failed to get post data", self.model_name or "unknown")

        usage = {
            "prompt_tokens": 0,
            "completion_tokens": 0,
            "total_tokens": 0
        }

        try:
            # Send request
            # response = self.http_provider.sync_call(processed_messages[0], endpoint="commonQuery/queryData")
            headers = {
                "Content-Type": "application/json",
                "X_ACCESS_KEY": self.stream_api_key
            }
            response_stream = self.http_provider.sync_stream_call(processed_messages, endpoint="chat/completions",
                                                                  headers=headers)
            if response_stream:
                for chunk in response_stream:
                    if not chunk:
                        continue

                    # Process special markers
                    if isinstance(chunk, dict) and "status" in chunk:
                        if chunk["status"] == "done":
                            # Stream completion marker, can choose to end
                            logger.info("Received [DONE] marker, stream completed")
                            yield self._convert_completion_message(chunk, is_finished=True)
                            yield ModelResponse.from_special_marker("done", self.model_name, chunk)
                            break
                        elif chunk["status"] == "revoke":
                            # Revoke marker, need to notify the frontend to revoke the displayed content
                            logger.info("Received [REVOKE] marker, content should be revoked")
                            yield ModelResponse.from_special_marker("revoke", self.model_name, chunk)
                            continue
                        elif chunk["status"] == "fail":
                            # Fail marker
                            logger.error("Received [FAIL] marker, request failed")
                            raise LLMResponseError("Request failed", self.model_name or "unknown")
                        elif chunk["status"] == "cancel":
                            # Request was cancelled
                            logger.warning("Received [CANCEL] marker, stream was cancelled")
                            raise LLMResponseError("Stream was cancelled", self.model_name or "unknown")
                        continue

                    # Process normal response chunks
                    resp = self.postprocess_stream_response(chunk)
                    self._accumulate_chunk_usage(usage, resp.usage)
                    yield resp
                usage_process(usage)

            logger.info(f"stream_completion cost time: {time.time() - start_time}s.")
        except Exception as e:
            if isinstance(e, LLMResponseError):
                raise e
            logger.error(f"Error in Ant stream completion: {e}")
            raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))

    async def astream_completion(self,
                                 messages: List[Dict[str, str]],
                                 temperature: float = 0.0,
                                 max_tokens: int = None,
                                 stop: List[str] = None,
                                 **kwargs) -> AsyncGenerator[ModelResponse, None]:
        """Asynchronously call Ant to generate streaming response.

        Args:
            messages: Message list.
            temperature: Temperature parameter.
            max_tokens: Maximum number of tokens to generate.
            stop: List of stop sequences.
            **kwargs: Other parameters.

        Returns:
            AsyncGenerator yielding ModelResponse chunks.

        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        if not self.async_provider:
            self._init_async_provider()

        start_time = time.time()
        # Generate message_key
        timestamp = int(time.time())
        self.message_key = f"llm_call_{timestamp}"
        message_key_literal = self.message_key  # Ensure it's a direct string literal
        self.aes_key = kwargs.get("aes_key", self.aes_key)

        # Add streaming parameter
        kwargs["stream"] = True
        processed_messages = self.preprocess_stream_call_message(messages,
                                                                 self._build_openai_params(temperature, max_tokens,
                                                                                           stop, **kwargs))
        if not processed_messages:
            raise LLMResponseError("Failed to get post data", self.model_name or "unknown")

        usage = {
            "prompt_tokens": 0,
            "completion_tokens": 0,
            "total_tokens": 0
        }
        try:
            headers = {
                "Content-Type": "application/json",
                "X_ACCESS_KEY": self.stream_api_key
            }
            logger.info(f"astream_completion request data: {processed_messages}")

            async for chunk in self.http_provider.async_stream_call(processed_messages, endpoint="chat/completions",
                                                                    headers=headers):
                if not chunk:
                    continue

                # Process special markers
                if isinstance(chunk, dict) and "status" in chunk:
                    if chunk["status"] == "done":
                        # Stream completion marker, can choose to end
                        logger.info("Received [DONE] marker, stream completed")
                        yield ModelResponse.from_special_marker("done", self.model_name, chunk)
                        break
                    elif chunk["status"] == "revoke":
                        # Revoke marker, need to notify the frontend to revoke the displayed content
                        logger.info("Received [REVOKE] marker, content should be revoked")
                        yield ModelResponse.from_special_marker("revoke", self.model_name, chunk)
                        continue
                    elif chunk["status"] == "fail":
                        # Fail marker
                        logger.error("Received [FAIL] marker, request failed")
                        raise LLMResponseError("Request failed", self.model_name or "unknown")
                    elif chunk["status"] == "cancel":
                        # Request was cancelled
                        logger.warning("Received [CANCEL] marker, stream was cancelled")
                        raise LLMResponseError("Stream was cancelled", self.model_name or "unknown")
                    continue

                # Process normal response chunks
                resp = self.postprocess_stream_response(chunk)
                self._accumulate_chunk_usage(usage, resp.usage)
                yield resp
            usage_process(usage)

            logger.info(f"astream_completion cost time: {time.time() - start_time}s.")
        except Exception as e:
            if isinstance(e, LLMResponseError):
                raise e
            logger.warn(f"Error in async Ant stream completion: {e}")
            raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))