File size: 13,097 Bytes
ae64487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import os
from typing import Any, Dict, List, Generator, AsyncGenerator

from aworld.utils import import_package
from aworld.logs.util import logger
from aworld.core.llm_provider_base import LLMProviderBase
from aworld.models.model_response import ModelResponse, LLMResponseError


class AnthropicProvider(LLMProviderBase):
    """Anthropic provider implementation.
    """

    def __init__(self,
                 api_key: str = None,
                 base_url: str = None,
                 model_name: str = None,
                 sync_enabled: bool = None,
                 async_enabled: bool = None,
                 **kwargs):
        super().__init__(api_key, base_url, model_name, sync_enabled, async_enabled, **kwargs)
        import_package("anthropic")

    def _init_provider(self):
        """Initialize Anthropic provider.

        Returns:
            Anthropic provider instance.
        """
        from anthropic import Anthropic

        # Get API key
        api_key = self.api_key
        if not api_key:
            env_var = "ANTHROPIC_API_KEY"
            api_key = os.getenv(env_var, "")
            if not api_key:
                raise ValueError(
                    f"Anthropic API key not found, please set {env_var} environment variable or provide it in the parameters")

        return Anthropic(
            api_key=api_key,
            base_url=self.base_url
        )

    def _init_async_provider(self):
        """Initialize async Anthropic provider.

        Returns:
            Async Anthropic provider instance.
        """
        from anthropic import Anthropic, AsyncAnthropic

        # Get API key
        api_key = self.api_key
        if not api_key:
            env_var = "ANTHROPIC_API_KEY"
            api_key = os.getenv(env_var, "")
            if not api_key:
                raise ValueError(
                    f"Anthropic API key not found, please set {env_var} environment variable or provide it in the parameters")

        return AsyncAnthropic(
            api_key=api_key,
            base_url=self.base_url
        )

    @classmethod
    def supported_models(cls) -> list[str]:
        return [r"claude-3-.*"]

    def preprocess_messages(self, messages: List[Dict[str, str]]) -> Dict[str, Any]:
        """Preprocess messages, convert OpenAI format to Anthropic format.

        Args:
            messages: OpenAI format message list.

        Returns:
            Converted message dictionary, containing messages and system fields.
        """
        anthropic_messages = []
        system_content = None

        for msg in messages:
            role = msg.get("role", "")
            content = msg.get("content", "")

            if role == "system":
                system_content = content
            elif role == "user":
                anthropic_messages.append({"role": "user", "content": content})
            elif role == "assistant":
                anthropic_messages.append({"role": "assistant", "content": content})

        return {
            "messages": anthropic_messages,
            "system": system_content
        }

    def postprocess_response(self, response: Any) -> ModelResponse:
        """Process Anthropic response to unified ModelResponse.

        Args:
            response: Anthropic response object.

        Returns:
            ModelResponse object.
            
        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        # Check if response is empty or contains error
        if not response or (isinstance(response, dict) and response.get('error')):
            error_msg = response.get('error', 'Unknown error') if isinstance(response, dict) else 'Empty response'
            raise LLMResponseError(error_msg, self.model_name or "claude", response)

        return ModelResponse.from_anthropic_response(response)

    def postprocess_stream_response(self, chunk: Any) -> ModelResponse:
        """Process Anthropic streaming response chunk.

        Args:
            chunk: Anthropic response chunk.

        Returns:
            ModelResponse object.
            
        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        # Check if chunk is empty or contains error
        if not chunk or (isinstance(chunk, dict) and chunk.get('error')):
            error_msg = chunk.get('error', 'Unknown error') if isinstance(chunk, dict) else 'Empty response'
            raise LLMResponseError(error_msg, self.model_name or "claude", chunk)

        return ModelResponse.from_anthropic_stream_chunk(chunk)

    def completion(self,
                   messages: List[Dict[str, str]],
                   temperature: float = 0.0,
                   max_tokens: int = None,
                   stop: List[str] = None,
                   **kwargs) -> ModelResponse:
        """Synchronously call Anthropic to generate response.
        
        Args:
            messages: Message list.
            temperature: Temperature parameter.
            max_tokens: Maximum number of tokens to generate.
            stop: List of stop sequences.
            **kwargs: Other parameters.

        Returns:
            ModelResponse object.
        """
        if not self.provider:
            raise RuntimeError(
                "Sync provider not initialized. Make sure 'sync_enabled' parameter is set to True in initialization.")

        try:
            processed_data = self.preprocess_messages(messages)
            processed_messages = processed_data["messages"]
            system_content = processed_data["system"]
            anthropic_params = self.get_anthropic_params(processed_messages, system_content, temperature, max_tokens,
                                                         stop, **kwargs)
            response = self.provider.visited_messages.create(**anthropic_params)

            return self.postprocess_response(response)
        except Exception as e:
            logger.warn(f"Error in Anthropic completion: {e}")
            raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "claude"))

    def stream_completion(self,
                          messages: List[Dict[str, str]],
                          temperature: float = 0.0,
                          max_tokens: int = None,
                          stop: List[str] = None,
                          **kwargs) -> Generator[ModelResponse, None, None]:
        """Synchronously call Anthropic to generate streaming response.

        Args:
            messages: Message list.
            temperature: Temperature parameter.
            max_tokens: Maximum number of tokens to generate.
            stop: List of stop sequences.
            **kwargs: Other parameters.

        Returns:
            Generator yielding ModelResponse chunks.
        """
        if not self.provider:
            raise RuntimeError(
                "Sync provider not initialized. Make sure 'sync_enabled' parameter is set to True in initialization.")

        try:
            processed_data = self.preprocess_messages(messages)
            processed_messages = processed_data["messages"]
            system_content = processed_data["system"]
            anthropic_params = self.get_anthropic_params(processed_messages, system_content, temperature, max_tokens,
                                                         stop, **kwargs)
            anthropic_params["stream"] = True
            response_stream = self.provider.visited_messages.create(**anthropic_params)

            for chunk in response_stream:
                if not chunk:
                    continue

                yield self.postprocess_stream_response(chunk)

        except Exception as e:
            logger.warn(f"Error in Anthropic stream_completion: {e}")
            raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "claude"))

    async def astream_completion(self,
                                 messages: List[Dict[str, str]],
                                 temperature: float = 0.0,
                                 max_tokens: int = None,
                                 stop: List[str] = None,
                                 **kwargs) -> AsyncGenerator[ModelResponse, None]:
        """Asynchronously call Anthropic to generate streaming response.
        
        Args:
            messages: Message list.
            temperature: Temperature parameter.
            max_tokens: Maximum number of tokens to generate.
            stop: List of stop sequences.
            **kwargs: Other parameters.

        Returns:
            AsyncGenerator yielding ModelResponse chunks.
        """
        if not self.async_provider:
            raise RuntimeError(
                "Async provider not initialized. Make sure 'async_enabled' parameter is set to True in initialization.")

        try:
            processed_data = self.preprocess_messages(messages)
            processed_messages = processed_data["messages"]
            system_content = processed_data["system"]
            anthropic_params = self.get_anthropic_params(processed_messages, system_content, temperature, max_tokens,
                                                         stop, **kwargs)
            anthropic_params["stream"] = True
            response_stream = await self.async_provider.visited_messages.create(**anthropic_params)

            async for chunk in response_stream:
                if not chunk:
                    continue

                yield self.postprocess_stream_response(chunk)

        except Exception as e:
            logger.warn(f"Error in Anthropic astream_completion: {e}")
            raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "claude"))

    async def acompletion(self,
                          messages: List[Dict[str, str]],
                          temperature: float = 0.0,
                          max_tokens: int = None,
                          stop: List[str] = None,
                          **kwargs) -> ModelResponse:
        """Asynchronously call Anthropic to generate response.
        
        Args:
            messages: Message list.
            temperature: Temperature parameter.
            max_tokens: Maximum number of tokens to generate.
            stop: List of stop sequences.
            **kwargs: Other parameters.

        Returns:
            ModelResponse object.
        """
        if not self.async_provider:
            raise RuntimeError(
                "Async provider not initialized. Make sure 'async_enabled' parameter is set to True in initialization.")

        try:
            processed_data = self.preprocess_messages(messages)
            processed_messages = processed_data["messages"]
            system_content = processed_data["system"]
            anthropic_params = self.get_anthropic_params(processed_messages, system_content, temperature, max_tokens,
                                                         stop, **kwargs)
            response = await self.async_provider.visited_messages.create(**anthropic_params)

            return self.postprocess_response(response)
        except Exception as e:
            logger.warn(f"Error in Anthropic acompletion: {e}")
            raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "claude"))

    def get_anthropic_params(self,
                             messages: List[Dict[str, str]],
                             system: str = None,
                             temperature: float = 0.0,
                             max_tokens: int = None,
                             stop: List[str] = None,
                             **kwargs) -> Dict[str, Any]:
        if "tools" in kwargs:
            openai_tools = kwargs["tools"]
            claude_tools = []

            for tool in openai_tools:
                if tool["type"] == "function":
                    claude_tool = {
                        "name": tool["name"],
                        "description": tool["description"],
                        "input_schema": {
                            "type": "object",
                            "properties": tool["parameters"]["properties"],
                            "required": tool["parameters"].get("required", [])
                        }
                    }
                    claude_tools.append(claude_tool)

            kwargs["tools"] = claude_tools

        anthropic_params = {
            "model": kwargs.get("model_name", self.model_name or ""),
            "messages": messages,
            "system": system,
            "temperature": temperature,
            "max_tokens": max_tokens or 4096,
            "stop_sequences": stop,
        }

        if "tools" in kwargs and kwargs["tools"]:
            anthropic_params["tools"] = kwargs["tools"]
            anthropic_params["tool_choice"] = kwargs.get("tool_choice", "auto")

        for param in ["top_p", "top_k", "metadata", "stream"]:
            if param in kwargs:
                anthropic_params[param] = kwargs[param]

        return anthropic_params